The Visual LISP
Developers Bible

' 2003 Edition (v2)
By David M. Stein

Visual LISP Development with AutoCAD 2004

Copyright ©2002-2003 David M. Stein, All Rights Reserved.

This publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose,
without prior explicit written consent and approval of the David M. Stein, hereinafter referred to as Author.

The Author makes no warranty, either expressed or implied, including, but not limited to any implied
warranties of merchantability or fitness for a particular purpose, regarding these materials and makes such
materials available solely on an “AS-1S” basis. In no event shall the Author be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or arising out of purchase or use of
these materials. The sole and exclusive liability to the Author, regardless of the form of action, shall not
exceed the purchase price of the materials described herein. All code examples herein are the original
works of the author unless otherwise stated herein. Any similarities to existing code examples by other
authors that are not explicitly identified are purely coincidental and unintentional.

The Author reserves the right to revise and improve its products or other works as it sees fit. This
publication describes the state of this technology at the time of its publication, and may not reflect the
technology at all times in the future.

AutoCAD, AutoCAD Development System, AutoLISP, Mechanical Desktop, Map, MapGuide, Inventor,
Architectural Desktop, ObjectARX and the Autodesk logo are registered trademarks of Autodesk, Inc.
Visual LISP, ACAD, ObjectDBX and VLISP are trademarks of Autodesk, Inc.

Windows, Windows NT, Windows 2000, Windows XP, Windows Scripting Host, Windows Messaging,
COM, ADO®), Internet Explorer, ActiveX®, .NET®, Visual Basic, Visual Basic for Applications (VBA),
and Visual Studio are registered trademarks of Microsoft Corp.

All other brand names, product names or trademarks belong to their respective holders.

Release Log

May 31, 2002 - Initial public release after having no offers to publish for profit. Bummer.

July 6, 2002 — Second public release. Added more to the chapter on Safearrays and Variants, minor
fixes throughout book.

August 5, 2002 - Third public release. Added more to the chapter on Reactors.

September 10, 2002 — Minor updates and corrections only.
October 15,2002 — Minor corrections and formatting changes. Updated acknowledgements section.
December 24, 2002 — Added more information on ObjectDBX and Xrecords.

March 5, 2003 - Updated to include information about changes introduced by AutoCAD 2004 in
chapter 25 (new chapter).

October, 2003 - Updated to include additional AutoCAD 2004 and Windows XP issues. Added more
comments and sample code throughout.

Acknowledgements

I would like to personally thank the following people for their help and guidance
throughout the making of this book: My wife Kathy, all four of my kids, my close friends
Brad Hamilton, Jon Szewczak, and Phillip Ash; my brothers Larry and Joel, my sister
Majel, and or course, God.

I would like to thank the following people for their insight and wisdom in general, which
has no doubt led me to undertake something like this: Joe Sutphin, Frank Zander, Frank
Moore, Jerry Milana, Andrew Hancock, Bud Schroeder, Tom Nelson, Mike Weksler,
Kenny Ramage, Frank Oquendo, Bill Kramer, Owen Wengard, Rheini Urban, Randall
Rath, Brett Rivers, Bob Leider, Joel Screbnick and Rob Spitzer. 1 would finally like to
pay homage to the following for have enlightened my programming skills by exposing
me to some of the most elegant and awesome coding and logic I’ve seen anywhere:
Andrew Hancock, Brad Hamilton, Randall Rath, Randy Kintzley, and Joel Screbnick.

I would like to thank my late parents for bringing me here.

I would like to thank the following for helping me by reviewing the manuscript for this
book and providing excellent comments and corrections: Kenny Ramage, Sherko Sharif,
Jon Szewczak, Phillip Ash, and many others | can’t hope to name.

Persons mentioned above, or anywhere within this document, that may work for certain
known companies are named out of appreciation for their generosity, renown expertise
and overall compassion for helping others to better understand and leverage the software
technologies discussed herein. It is in no way a statement of acknowledgement, approval
or condonement on behalf of their employers or themselves in any manner. Some of
these people do not even know I’ve named them herein. Ho ho ho.

Contents

ADOUL T8 AULNOT ...ttt bbbttt e b e eb e bt bt ek e e Rt ebe e nb e be s beebe et e neeneennennas 7
Ty go o 1o (o] OSSOSO 8
WL IS WVISUAI LISP?.....oiiiiie ettt bttt bttt 8
Comments used Throughout ThiS BOOKcceiiiiiieiieiieiieie sttt e e snens 9
THE FULUIE? ..ttt bbbt b bR bt h bt b s bt s bttt b et n e bt s e bt s en s 9
Chapter 1 - The Visual LISP Development ENVIFONMENLcccoviveieriireie e 10
The Visual LISP IDE TOOIDAIS........cciiiiieietirieiste ettt sttt ettt sbe et sbe et sbeseenens 11
The VLISP IDE PUI-DOWN IMENUSocuviiiiiieiieiesiesie sttt etee ettt see s neeeesaesteseesnessesnesseenseseeneens 12
Chapter 2 — Basic Coding in ViISUAI LISP ..ot 14
Comparing AULOLISP t0 Visual LISP/ACLIVEXc.ooiiiiiiiiie ittt 15
IVHEXENG COOR ...ttt bbbkt s e e e bt bt bt ekt b e e b e e et et eb e s benbeebe st e e neeneenneneas 17
NEStING ODJECE RETEIENCES. ... ettt bbbttt e bbbt b e e 17
Exploring Object Properties and MEthOGS...........ccieiiiiiiiiciciece et 17
ACTIVEX VS, DXF? 1ttt ettt b et b bbb e bt et bbbt n et et ns 19
SEIBCTION SBES ...ttt ettt ettt et s b bt b et s bbbt n bt ann 19

POINE LSS 1.ttt ettt bbbt b e bbb e bt e ke s b et b e s e et et e et e ebe e ebeabe et 19
LV = €] 1] 1SS 19

AN the WINNEE IS... ottt bbbt sttt b 20
Chapter 3 — Using ACtiveX With ViISUAL LISP ..ot 21
(O TSRS 21
Derivation and INNEIITENCE.......cc.iiiieie e sttt s et ae s 22

(@] o] TTox 1T OSSPSR 22

(O F I 0 o T g g (ot TR SUTRP 23
ColleCtioNS AN DICHIONAITESccviiteieieieee ettt ettt b e sb et e e e et sb e be bttt s b e aeen e e e e 24
Properties, Methods anNd EVENTS..........coiiiiiiiiiiecieie ettt st te e et sa et e sbesbesna e e enee s 24
PrOPErtY REIBVANCEoouviiiiiiiie ettt ettt b e st teeae e s e et e b e st e testeebesteeneenee e et es 25

L L oY =) Lo o SRR 28

I = T IV oL OSSR SRR 29
Constants aNd ENUMEIALIONScoueiiiieiierieesie ettt sttt e et eb bbb anis 30
Variants AN SAFEAITAYSe.veiitiieiiitieirt bbbt b ettt 31
NEIMESPECES ...ttt r e bbb et r Rt b b et e et b e Rt bbb e r bt bt 31
Interfaces and TYPE LIDIArIESoiiiiiiii et 32
Microsoft Office TYPELID VEISIONS........oiiiiiiiieiiree sttt e 35
Chapter 4 — Debugging Code With ViSUAI LISPcc.ccooiiiiiiiiiie e e 36
BIEAKIIOINTS ...ttt bbbttt bbb bbbt R e et b e bbb e Rt n e e b e 36

RS (=] 0] 11 1o S PSSSRRSN 38

F AN a1 00T Lo o IO OO SO S TR 38
RV L T OSSOSO 39

I (o] 1o PSS 40

L] o<1 o o TSRS 40
Y00 010 B T=T Y ot SRS 41

F N0 (0] T T TSP PP PR PSP 41

L0 0] 4T TSR 43

(€ 10) (o I8 I T3 01 1o ST PRSSRRN 43
g o] g I =T o1 Vo [P SO URTURURRT 44
Visual LISP Error Trapping FUNCHIONScviiiiiiieiiie ittt sttt 44
Chapter 5 — Working with Projects and Multiple Files ... 50
Chapter 6 — Working with Variants and Safearrayscccceveiviieiiieieiene e 52
Visual LISP Variant FUNCLIONScuiuiiiiiieiiisieisie ettt sttt neans 52

A LT oL I - - W Y S 53
Visual LISP SafeArray FUNCHIONS.oiiviieieiee e se ettt e e sne st e eneennenees 54
Chapter 7 —Object Manipulation FUNCLIONS.........c.coviiiiieiiiece e 60
Chapter 8 —File and DireCtory FUNCHIONS.couiiriiiiiieieieesie et 63
Chapter 9 —Mapping and Iteration FUNCHIONScoiiiiiiiieii s 67

Chapter 10 “Working With NAMESPACESceieeiiieiciieiteie ettt sttt re e sr e b sresre e enee s 70

N E g Lo T (ot Yol o [o SRS 71
NAMESPACE FUNCLIONSviviiiieeetieeee ettt ettt reene e s e e et e see st e s teeneese e e en e neeseenreaneeneeneentees 71
Chapter 11 —RegiStry FUNCLIONSc..oiviiiieiisiee e ettt sttt e e e et seesnesreaneeraeneeneenes 78
Chapter 12 — Reactors and Call-BaCKSc..cviveieieieiesese sttt era e es 81
Visual LISP REACION FUNCLIONS.cc.iiiiieiiiieieiese sttt st sttt see st besnesneeneenee e 82
REBCTON TYPES ..ttt bRt h et e bRt bt b e bt e e e e e r bbb 83
VEITYING REACIOT TYPES. ...ttt ittt ettt sttt et b e et b et b e e bt bbbt ebe et ebene bt abe e ebeebenrere s 86
USING ODJECT REACLOIS ...ttt ettt sttt b ekt e e b b e b e bt b e e st e s e e neesbenbe bt ebe e e eneeee 88
Attaching Data t0 REACION OBJECLSoiueiuiriiiieie ettt se bbbt ne e 90
Inspecting Reactors Within the VLIDE ...t 90
L@y 0T T To1 (o] £ S 91
Transient and PersiStENt REACLOIScviiieiiirieiete ettt sttt ettt se e b seereas 91
Opening Drawings With PersiStent REACIOIS.........cccviiviieiieriiie et 92
Reactors and MUItiple NaMESPACES.......ccviiiiiiieeiere st e et snesre e enee s 92
GUIdEliNES TOr USING REACIOISecvvevieiiiiesiesie ettt et ettt e e saesaesaesaeereeneenee e eneees 93
Chapter 13 — Making Visual LISP APPIICAIIONScvciiiiiiiiiiiriec s 96
Why MaKe VLX APPIICALIONS? ..ottt bbbt 96
Building @ SImple APPHCALIONc.oiiiiiiiiie et 96
PRV FIIES. .ttt ettt sttt b st st e s et st e s e e be s e et e e ke st et e et et et e e be st e te et e eteere e etenns 101
Chapter 14 — Using ObjectDBX With ViSUI LISPccccoiiiiiiiiienere e 102
WhEL IS OBJECIDBX? ...ttt sttt s b et s bt be st et et st et et st et be st ene st 102
How to Use ObjectDBX Within ViSUal LISPcccccviiiiiiiieiecce et 102
Chapter 15 — XDATA and XRECORDSccvcoiieiaisierieesieese ettt e sttt sse st st ssstessenessns 107
WOTKING WIth XDATA ..ottt ettt ettt e st et e st e st e s teeae et e e b e beseesbestesbeeteeneeneeeens 107
Working With XRECORD ODJECES.......viveieiieriere ettt st sne e enaeneens 107
Chapter 16— The AutoCAD ApPlCation ODJECL........c.ccveiiireieresisr e enees 111
Chapter 17 — AULOCAD ENTIIES.....cveiieeiisiese s se ettt ne e neesee e e teseesnesrenneenens 115
All ODbjects — COMMON PrOPEITIEScviviiieiiteieee sttt 115
THE ARC ODJECT ...ttt bbb bbbttt nb 115
THE CIRCLE ENEITY ..eiviiitiitiieiicee ettt bttt e et e sttt ne it 116
The RotatedDimension (LinearDIimension) ENTILYccoureeirieieneie e 116
THE ELLIPSE BNLILY ...iviviitiiciiitiiese ettt bttt ettt ne et 117
THE LEADER ENEILY ...eviviitiiciicieese ettt bbbttt 118
THE LINE ENEIY ..ttt b ettt et st n et 118
THhe LWPOLYLINE ENEILY ...vcviiieieeiieiee sttt sttt sttt sttt 118
THE MLINE ENLILY .eoviieiececece ettt e et se et e teene e b e e saeneese e beneesnenreeneareenes 118
LI I = =T €1/ 118

LI L= 2O N =T 01 119
THEe POLYLINE ENEILY ©.cveiviicieiieiee sttt sttt sttt sttt b et s b et sbe st sbene e 119
THE RAY ENEILY .ottt bbb b etk b ettt bt 119
THE SOLID ENTILY ...tttk bbb bbbt b et bbbt 120
THE SPLINE BNEITY ..evtveiiitiietisie sttt ettt bbbttt s bt ne bt ne it 120

LI LI = =141 1TSS 120
THE TRACE BNEILY ...ttt ettt bbbttt e s e et b eneebenbe et 120
THE VIEWPORT ENEILY 1veiviieiiiieieieiteiee sttt sttt sttt st sttt sttt sb et sttt nbene e 120
THE XLINE BNEILY .ttt ettt sttt bbb n et 120
Chapter 18 — DOCUMENLSccviiieiiieieeetertestestesteste e e esae e e ste e stestesteeseesee s e bestestesteesaesaesseseeseestestesaeatensnasens 121
The DOCUMENES COBCLIONoveiiiiiiciicie ettt 121
Chapter 19 — The Preferences ODJECES.......viv i re e eneas 125
The AcadPreferences ColleCtion ODJECE.........cvcviieeiice e 125
The DatabasePreferences ODJECTcoiiiiiie e 128
REl0adING 8 PrOTIIE ..ottt et 129
Chapter 20 — MeNUS and TOOIDAIS.ccuiiiiiiiiieieeee ettt be bbb b b e neeneas 132
The MENUBAT ODJECL ...t b e bbbt sb e sb e bbb et e 132
GettiNg MENUBAT TTEMS. ..ottt bbbttt et et b e sbe s b st e e s 133

Inserting PopMenus into the MenuBar COlIECLION............ccccviiiiciiiccc e 133

Removing PopMenus from the MenuBar COIIECLION............ccooeiiiiiiie i 134

The MenuGroups ColleCtion ODJECT.........cviiv i e re s 134

I LY 0T (T K@ o T SRS 134
QLI o] o\ L= T @] o] 1= 135
THE POPIMENU ODBJECT.......ivieiitiiteieistee bbbttt bttt 135
The Toolbars CollECtioN ODJECT........ccoiiiiiiee e e et 135
THE TOOIDAI ODJECT.....c.ecuieiiitiiee bbbttt b et b b 135
Creating @ TOOIDAToiuieee bbbttt b e sbe bbb et e 137
Chapter 21 — Interfacing with Other APPlICALIONS..........coiiiiiiiiiice e 139
IMHICTOSOTE EXCEI ...ttt ettt bt bt s b et b et et sttt bttt ne et 139
WiINAOWS SCHIPLING HOSL......eiciiiiciciecs s sttt te st s te e aeete e e e et et e sbesaeereeneens 141
The FIleSYStEM ODJECE ... uiiviiiiicieee ettt st be et et e e e e e st e tesaeete e e enee s 142
Windows Messaging and CDONTScviioieiie e e et e e s e aesaesaestesrasreeneenaesnens 143
Windows Management Instrumentation (WMcooviiiiiiiicescs e 145
WOTKING WITh SEIVICES ...evviviciicicie ettt et teene e s e et e e seesaestesnesreaneeneennens 146
Chapter 22 —Using Visual Basic DLLS With Visual LISPc.ccccooeriiiiiniiiiicneeeese e 148
REGISTEITNG DLLS.....c vttt bbbttt et b et ne e 151
RE-REGISIENNG DLLS ...ttt bbbttt 151
Chapter 23 — Working With Dialog FOIMMScoiiiiiiiiiie e 153
Referencing DCL DefiNITIONS........ccoiiiiiiie ettt bbb b eneas 153
Dynamic Dialog INEIrACTION.c.iiiiiie ittt bbb bbb e 154
Controlling Images From Call-BacksS...........cccccviiiiiieiicieice s 155
Chapter 24 — Examples 0f COMMON TASKSccveiiiiiiiieiesie sttt a e a ettt tesre e nneneas 158
Example 1 — Dumping a List 0f Layer PrOPEILIESccovcveieiiiiesiesesie st eteeseesie et e e sne s 158
Example 2 — Set All ENLitieS t0 “BYLAYEI"coviieieiee e sie sttt sre e e eneas 159
Example 3 — Purge, Audit and Save all Opened Drawings........ccccveoveverererieniesnsieseeieseeseseeseeseeseeses 159
Example 4 — Zoom Extents and Save all Opened DIraWingscccoceverierrnesieeeerieseseseeseseseeseeseenees 160
Chapter 25 - Changes in AULOCAD 2004ccooiieiieiee ettt st 161
GENETAL CRANGES ... vttt ettt bbbt bbbt bbbt bbbt bbb 161
VISUBI LISP CRANGESeeteiieiieiete ettt ettt bbbttt eb e bbbt et e st et e b e ke sb e b e sbesbeebeene e 161
I8RO] (o] gl o o] oL 4 (=T SOOI 162
Changes to the ObjeCtDBX INEITACEcouiieiieie e 163
Changes to External Referencing of AcadApPPIICALIONccccoveviiiiiiiiiie e 164
Changes t0 ACAAPIETEIENCEScciiiiiie ettt st sttt e te e e et re st e besbestesreeree e enes 164
)Y (= LI AT o] 167
INEW COMIMENGS ...ttt sttt sttt sttt b ettt b e e e b e eb et et e eb e s e et e ebe e et e ebene e b e et e e ebeabe e ebennes 168
Modified Commands (Since AULOCAD 2002).........ccceierireieeieieeiesesese e e seseeseeseese e sresse e ssesseens 169
TOOI PAIBIEES ...ttt b bbbt b e bbb bbb n et 169
(O] T 1115 T o PSSRSO 172
Appendix A - VLAX ENUMEration CONSLANTS..........cuiiiiiriiiiiiriiisiini sttt 173
Appendix B — VLISP IDE Keyboard SNOIMCULScoeiiiriiiiiiiisieecse e 175
Appendix C — Tips & Tricks FOr VisUal LISPcooiiiiiiiiiee s 176
Adding VLX support to the (autoload) FUNCLIONccoiiiiiiiiii e 176
Saving your VLIDE configuration SELHNGS.ocviiaeiiiierieie ittt e 176
Recovering DCL Code from VLX FIlES ...ttt 176
Using Projects and DCL with the Make Application Wizardcccceveveniieiiesinsie e 176
Team-based VLX DEVEIOPMENTcoiicieiiie ettt st sresbe e ere e e e e aesrens 177
APPENIX D — USETUI RESOUICTESeveviiieieierieieiesieste e ste e e e et e st st te e s e e s e e sa e tesnesnesreeneereeneeneenes 178
[101517 1 PSSP 179

About the Author

David Stein was born, although some might disagree. He lives in Virginia, which is in
the United States. For those outside of the US, Virginia is south of New York, north of
Florida and east of California. Why am | writing in third person? The particular area
where | live is very military oriented. All branches of the military are heavily represented
here, but being that we’re on the coast, the Navy and Coast Guard are the most prevalent.

After 15 years of working as a drafter and designer in the shipbuilding industry, |
graduated in 1999 from a local university with a Bachelor’s of Science in Information
Science and now work as an IT Manager at a large defense contractor. My job title is
Manager of Software Applications, but | evolved into this from my previous role as
Manager of Engineering and Design Applications. | have been writing various types of
program code for over ten years, but have always been involved in AutoCAD
programming as a continuum of sorts. The story behind this is so mundanely trivial and
unexciting that to commit it to writing should be a punishable crime.

Today, | split my time between CAD applications development, web-based applications
development, network administration, strategic business development, washing dishes,
taking out the trash, taking my four kids to the beach every day, and drinking beer. 1 also
develop software for routine network administration tasks using many different toolsets.

In all, I have worked with languages like Visual Basic, Visual InterDev, FrontPage,
Microsoft Access, VBA, AutoLISP, Visual LISP, Windows Scripting Host (WSH),
Windows Management Instrumentation (WMI), Active Directory Services Interface
(ADSI), Cold Fusion, SQL, Active Server Pages (ASP), Kix Scripting, Windows Shell
programming (aka Batch and CMD files), Microsoft Systems Management Server (SMS)
administration and scripting. These days | perform such vital duties as general coffee
drinking and bullshit talking to whomever can’t run fast enough to escape me. Phew!
Do you really care about any of this? Sheesh!

Introduction

This book is aimed at helping experienced AutoLISP programmers better understand and
use Visual LISP. What? You mean AutoLISP and Visual LISP are not the same thing?
No! They are not! This book will cover topics such as ActiveX, Compiling Code,
Debugging, Formatting, Deploying and using advanced features such as reactors and
namespaces. AutoLISP fundamentals are left for other books to cover as that topic has
been aptly covered elsewhere already. This book will focus solely on the Visual LISP
extensions to AutoLISP and the unique capabilities and features Visual LISP provides.

For this book, you will need to have access to using AutoCAD 2002 or other Autodesk
products that include the Visual LISP toolset such as Mechanical Desktop or Map. Note
that Visual LISP is not included with, or usable by products such as Inventor or
AutoCAD LT. Nor is Visual LISP provided within competing products such as
IntelliCad™ or CadKey®.

What is Visual LISP?

Visual LISP began life as a product of Basis Software, originally named Vital LISP.
Vitual LISP had a solid and hard core following, which gained the attention and respect
of Autodesk, who purchased the full rights to Vital LISP during the late stages of
AutoCAD R14 and renamed it Visual LISP. It was then available as a separate add-on to
AutoCAD R14. With the release of AutoCAD 2000, Visual LISP replaced the older
Proteus AutoLISP interpreter module and became an integral part of AutoCAD. It was
then incorporated as the LISP interpreter in all AutoCAD-based vertical products, such as
Map, Mechanical and Mechanical Desktop.

Visual LISP is more than simply a replacement for AutoLISP, in fact it still works with
older AutoLISP code just fine, but it also includes many new improvements. Among the
differences are a built-in syntax-aware code editor, dialog previewing, debugging tools,
formatting tools, online development references, a compiler and compiler wizard,
workspace project management and more.

But the most significant changes to the language itself are due to the addition of ActiveX
interface functionality. This effectively puts Visual LISP potential on par with other
ActiveX technologies such as Visual Basic for Applications (VBA). While Visual LISP
still lacks many of the sophisticated tools VBA has, it does possess the capability to
interface with ActiveX providers and consumers such as Microsoft Office, Microsoft
Windows, and even AutoCAD itself, in ways not possible with AutoLISP alone.

While Autodesk has revised Visual LISP somewhat from its origins in Vital LISP, most
of Vital LISP features have not changed much. Visual LISP could be improved to make
it an even more powerful development platform, but it seems Autodesk is more interested
in other technologies such as VBA, ObjectARX and XML, than ugly old LISP.

Autodesk chose to exclude support for many features in Vital LISP when moving it to
Visual LISP. This is unfortunate and unfounded given that the overwhelming majority of

8

development is still done in LISP or Visual LISP. While many Vital LISP features still
exist in Visual LISP, their documentation is not available and this makes certain features
risky to use, let alone just figure out. If you happen to be an old Vital LISP user, you
should be aware of this. Some of these features will be explained later in this book.

Comments used Throughout This Book

Some notations will be shown throughout this book that denote specific types of
information. For example...

1‘“”
will denote information that may not be documented elsewhere or may be
difficult to find.

will denote information that you should be aware of in order to avoid problems
or errors in your programming code.

The Future?

Good question. Wouldn’t we all want to know the future. As for the future of Visual
LISP, it’s anybody’s guess. Autodesk has provided nothing to indicate what the future of
Visual LISP might be. Rumors abound that it will be replaced by VBA, but that seems
unlikely in the near term anyway. Also, at the time of this writing, new technologies are
emerging such as Microsoft’s .NET framework (http://www.microsoft.com/vs), and new
variants of LISP such as SharpLISP by 3" Day Software (http://www.objectdcl.com).

In my humble opinion, Visual LISP is an extremely powerful, flexible and dynamic
language to develop upon with respect to CAD applications. It could do much more if
given a little nourishment, but it seems the refrigerator is a bit empty lately. Until
something comes along that can fully replace it without any limitations, | will continue
using it along with the dozen or so other languages | strap on each day to do my work.

Chapter 1 - The Visual LISP Development Environment

The VLISP IDE (Integrated Development Environment) is a combination of tools to help
make coding, testing, debugging and compiling output easier and more productive. To
invoke the VLIDE, type in VLIDE at the AutoCAD command prompt. This will load the
VLISP ObjectARX application interface (vlide.arx) that loads and enables the IDE for
use while AutoCAD is in use. Because Visual LISP is an integral part of AutoCAD, you
cannot use the VLISP IDE without AutoCAD being in use.

[___J‘l_i\fisual LISP for AutoCAD <NNSY_PIPE.dwg >
File Edit Search VYiew Project Options Window Help

EEEr TN =2l

P ‘ ”)Gl G o

[dl | clnen ||(|BRELS%OR
= d Ouktp - | O % =
—~SAVEASPROKMPT -]
Pull-Down Menus : Toolbar Menus

[FASDUMPIHG object format -> “C:/ASW2K/COM/SYS/asw-api-utilities.fas"]
; Compilation complete.

_
Windows =
7
'h'isual LISP Console - O] x|
_$ 5
H Trace S =] 3
ﬂ ntitled-8> loading...">
Cursor Position |
Status Bar - v
| v 4 “
4 »
[Dutput windo® RO [L 00106 C 00001

Figure 1-1 — The Visual LISP IDE

Note the IDE features shown in Figure 1-1 above. The top portion includes the IDE pull-
down menus and toolbars. The mid-section includes the Build Output, Visual LISP
Console and Trace windows. This is also where open program code is shown and edited
in separate windows (one per file). Other windows (not shown above) include the Watch
window, Object Inspection and APROPOS window.

The bottom edge of the IDE window contains the Status bar. This is where messages are
displayed following every action in the IDE. The bottom-right panel is the code editor
cursor location display. This shows the current position of the cursor in the code file
where L nnnnn is the line number and C nnnnn is the character offset number. In this
example, the cursor is positioned on line 106 on the first character of that line.

10

The Visual LISP IDE Toolbars

There are four individual VLISP IDE toolbars available. You can move them, dock or
undock (float) them as well as hide or show each of them to suit your particular tastes.
The toolbars do not exactly match their corresponding pull-down menu features to be
careful not to assume that everything exists on a toolbar for being accessed in the VLISP
IDE window. You may find that pull-down menus are more effective.

(806 s =Rl o|x

Figure 1-2 — The STANDARD toolbar

The STANDARD toolbar includes general file management features from left to right:

New

Open

Save

Print

Cut

Copy

Paste

Undo

Redo

Complete Word

|p =P

Figure 1-3 — The TOOLS toolbar

il
IS

[=]

The TOOLS toolbar contains general editor features from left to right:

Load File

Load Selection

Check File

Check Selection
Format File

Format Selection
Comment Selection
Uncomment Selection
Help

ooy «2t/med/lo

Figure 1-4 — The DEBUG toolbar

The DEBUG toolbar contains tools for testing and debugging code during controlled
execution. This includes from left to right:

11

Step Into

Step Over

Step Out Of
Continue

Stop

Quit

Toggle Breakpoint
Add Watch
APROPOS

Last Break

ol T X108

Figure 1-5 — The VIEW toolbar

The VIEW toolbar contains options from left to right:

Activate AutoCAD (switch to AutoCAD editor)
Display LISP Console

Inspect Object

Trace Window

Symbol Service

Apropos

Display Watch Window

The VLISP IDE Pull-Down Menus

The VLISP IDE pull-down menus are always available by default within the IDE
window, whereas the toolbars can be moved, hidden and so forth. As was mentioned in
the section above, the pull-down menus contain much more in terms of VLISP editor
commands than do the toolbars. For this reason, you may find using the pull-down
menus more efficient and effective for daily coding chores.

12

File Edit Search

view Project

New File Ctrl-n

Open File... Ctrl-0
Reopen L4
Save Ctrl-S

Save As... Ctrl-Alt-S
Save All Alt-Shift-S
Close Ctrl-F4
Revert

Close All

Print... Ctrl-P

Print Setup...

vlake Application 4
Load File... Ctrl-Shift-L
Exit Alt-0

Figure 1-6 - File Pull-down

Edit Search View Project Debug

Undo Ctrl-2

Redo Ctrl-Alt-2
Cut Chrl-%

Copy Ctrl-C
Paste Chrl-%
Delete Del

Select All Ctrl-A
Parentheses Matching Ctrl-M 4

Extra Commands

Figure 1-7 — Edit

Indent Block

Unindent Block

Indent to Current Level
Prefix With...

Append With...

pull-down

Tab
Shift-Tah
Ctrl-Alt-Tab

Comment Block
Uncomment Block
Save Block As...

Upcase
Downcase
Capitalize

Ctrl-shift-u
Ctrl-u

Insert Date
Insert Time
Format Date/Time...

Sort Block

Insert File...

Delete to EOL
Delete Blanks

Figure 1-8 — Extra Commands

The File pull-down menu contains standard file
management options such as Open, New, Save, Print and
Exit. It also provides useful commands like Revert, Close
All, Save All and Load File. The Make Application
features are discussed later in Chapter 13.

The EDIT pull-down menu contains standard clipboard
commands, as well as parenthesis matching and a special
fly-out named “Extra Commands” that provides some
useful editing command features.

The Extra Commands fly-out menu, located under the Edit
pull-down menu, contains quite a few hidden commands
that can save you a lot of time and effort editing code. In
particular, Prefix With and Append With, UpCase and
Downcase, Capitalize, Insert Date, Time and Sort Block.

13

Chapter 2 — Basic Coding in Visual LISP

In this chapter we will begin writing some basic code using Visual LISP and walking
through a simple process for coding, testing, debugging and compiling your code into a
finished product. For the sake of trying to at least remain relevant to what a CAD
programmer expects, this will not involve the customary “Hello World” coding stuff.

(vi-load-com)

In order to use any of the cool ActiveX functions in Visual LISP, you must first initialize
the ActiveX interface by using the (vl-load-com) function. This can be included in every
file or every function definition, it doesn’t matter. Once it has been executed, subsequent
calls do no harm whatsoever.

(defun C:SHOWLAYER (/ ent lay)
(if (setqg ent (entsel ‘“\nSelect object to view layer name: “))
(alert
(strcat “Layer name: “
(vla-get-layer (vlax-ename->vla-object (car ent)))
)
)
)
(princ)
)
Figure 2-1 - SHOWLAYERS.LSP

The code in Figure 2-1 demonstrates how to get the layer
assignment of a selected entity and display it in a simple alert

box. Load this code into AutoCAD and type SHOWLAYER at ~ -a®" name: BORDERS
the command prompt to run it. You will be prompted to select

an object on screen “Select object to view layer name:” upon
which the object’s layer name is then displayed as follows...

While the differences between how you might traditionally access the layer name using
DXF entity access is only slight, the user does not need to know that DXF field 8 is the
layer assignment. They can instead use (vla-get-layer) which is a bit more intuitive. This
is the crux of what makes the ActiveX features in VLISP attractive: clarity.

»fil’!

You can add (vI-load-com) to your startup suite in many ways. You can add
it to your acad.Isp or acaddoc.Isp file. You can make a small LSP file and select it in
APPLOAD as part of your “startup suite”. You can also include it in any .MNL file.
Calling (vI-l1oad-com) multiple times in a given session produces no negative effects.

14

Comparing AutoLISP to Visual LISP/ActiveX

{vla-get-layer (vlax-ename->vla-object (car ent}}) ‘:j
{cdr (assoc B (entget {car Ent}}}}l -J
A b 4

Figure 2-2 — Comparison between LISP and Visual LISP methods

Both expressions shown in Figure 2-2 will accomplish the same thing essentially. While
the first expression is a bit wordier, and actually consumes slightly more system
resources to execute, the increased baggage is ultimately negligible in most respects.

Once the initial access is made to either root collection of properties (namely, entget or
vlax-ename->vla-object), which is normally done once per object manipulation, the rest
is actually simpler to write in ActiveX form. The following code example:

(defun GETLAYER (entity 7/ elist)
(cdr (assoc 8 (entget entity)))
)

...1s functionally identical to the following code example...

(defun GETLAYER (entity / obj)
(vla-get-layer (vlax-ename->vla-object entity))
)

This is not a comprehensive comparison by any means, since this doesn’t demonstrate
how the ActiveX object model allows you to navigate relationships in a logical manner.
For example, the following code shows how you can retrieve a property setting from the
Preferences/Files collection:

(vla-get-supportpath
(vla-get-files
(vla-get-preferences (vlax-get-acad-object))

)

The above capability is not possible to accomplish with AutoLISP alone. It is made
possible by ActiveX and the object model of AutoCAD, and the fact that Visual LISP and
VBA can access these features through their ActiveX interface to AutoCAD.

Using another example of accessing a particular LINE entity’s properties, you can see
how the ActiveX interfaces provide very easy to understand names that make coding
more intuitive:

(setq ent (car (entsel “\nSelect line object: “)))
(setq objLine (vlax-ename->vla-object ent))
(vla-get-layer objLine)

(vla-get-color objLine)

(vla-get-lineweight objLine)

(vla-put-layer objLine “07)

15

(vla-put-color objLine acRed)

As you can see from this example, it is much more intuitive to access and modify entity
properties through ActiveX than by using the more cryptic DXF code numbers. Also, it
is worth noting that while the DXF 62 code is transient, the Color property of an entity is
persistent. To put this yet another way: An entity that has color=ByLayer has no DXF
62 field in the (entget) data list. Only when a color is applied to override the layer
defaults will the entity (entget) data list have a DXF 62 field. However, if you access the
same entity through ActiveX, even with color=ByLayer, the return value will be
acBylLayer.

As an example of how this might be of use to you as the developer, consider the
following function that copies layer, color and linetype properties from one entity to
another:

(defun CopyLayerColorl (objl obj2)
(vla-put-layer obj2 (vla-get-layer objl))
(vla-put-color obj2 (vla-get-color objl))

)

You’ll notice that we don’t have to rely upon DXF codes, nor do we need to use (subst)
or (entmod) functions to update the entity properties. This same function written in
AutoLISP might look something like the following example:

(defun CopyLayerColor2 (entl ent2 / elistl elist2 layl coll)
(setq elistl (entget entl)
elist2 (entget ent2)
layl (cdr (assoc 8 elistl))

(setq elist2 (subst (cons 8 layl) (assoc 8 elist2) elist2))
(if (assoc 62 elistl)
(progn
(setq coll (cdr (assoc 62 elistl)))
(if (assoc 62 elist2)
(setq elist2 (cons (cons 62 coll) elist2))
(setq elist2 (subst (cons 62 coll) (assoc 62 elist2) elist2))
)
)
)
(entmod elist2)

)

Notice the additional checking required for the DXF 62 code existence in both the source
and target entity data lists. As you can see, Visual LISP and ActiveX can dramatically
reduce the amount of code required to perform many common tasks. Reducing code also
reduces the potential for errors. Reducing errors also reduces the amount of effort
required to test and debug code. All of this results in faster, easier and more productive
programming with better quality results. And this makes for happier customers!

16

Mixing Code

While you can easily entwine both traditional AutoLISP and newer Visual LISP code
within a given program or even within a given function or statement, it is not
recommended. In fact, you can create some very strange problems mixing things like
(entmake) and certain objects within Visual LISP. | strongly recommend that you make a
concious decision to go one way or the other and not both except in rare cases. One
exception | rely upon is (ssget) and the various selection set functions, which are far
easier to implement in older AutoLISP than with the SelectionSet object properties and
methods in ActiveX, which are more like Group objects than ad hoc collections.

Nesting Object References

While it is easy, and entirely allowable to nest object references in a given statement,
there are good reasons to not do it implicitly. By this, | mean that you should always
store an object reference in a variable (symbol) as opposed to simply passing it up the
chain to the next property or method invocation. You’ll see me use nested code like this
throughout this book, however, I strongly recommend NOT doing that. Refer to the two
examples below:

Bad Example:

(setq oFiles (vla-get-Files (vla-get-Preferences (vlax-get-acad-object))))

Good Example:

(setq oFiles (vla-get-Files (setq oPrefs (vla-get-Preferences (setq oAcad
(vlax-get-acad-object))))))

Alternate Good Example:

(setq oAcad (vlax-get-acad-object)
oPrefs (vla-get-Preferences oAcad)
oFiles (vla-get-Files oPrefs)

)

Why would this matter to anyone? Well, when you pass implicit object references, you
are calling an external interface function each time and throwing it away. If for some
reason you need to access a nested object again you will need to fetch it again. Each time
you are adding overhead to your processing. When you save the object to a symbol, you
allow for repeated access to it with much less processing overhead. In addition, it
provides you with explicit control over the lifespan of that object reference. You can
decide when to discard it, or “release” it, in object parlance.

Exploring Object Properties and Methods
If you haven’t already discovered the various properties and methods provided by objects

within AutoCAD, a very good way to start is by getting familiar with the (vlax-dump-
object) function. This function requires one argument, the object, to request the object

17

properties, and an optional argument, a flag (anything non-nil) to request the object
methods.

(vlax-dump-object object [show-methods])

Example of using this function on a standard LINE entity as follows:

_$ (setq e (entsel)); pick a LINE entity
_$ (setq obj (vlax-ename->vla-object (car e)))
Returns #<VLA-OBJECT lAcadLine 00f20024>

_$ (vlax-dump-object obj T)
IAcadLine: AutoCAD Line Interface
; Property values:
; Angle (RO) = 0.630844
; Application (RO) = #<VLA-OBJECT IAcadApplication 00a8a730>
; Color = 256
; Delta (RO) = (4.98519 3.64122 0.0)
; Document (RO) = #<VLA-OBJECT lAcadDocument 00edleOc>
; EndPoint = (9.63516 6.56966 0.0)
; Handle (RO) = ""2B"™
; HasExtensionDictionary (RO) = O
; Hyperlinks (RO) = #<VLA-OBJECT IAcadHyperlinks 00f21c44>
N Layer = "0"
; Length (RO) = 6.17338
Linetype = "ByLayer™
LinetypeScale = 1.0
Lineweight = -1
Normal = (0.0 0.0 1.0)
ObjectID (RO) = 1074179416
ObjectName (RO) = "AcDbLine"
OwnerID (RO) = 1074179320
PlotStyleName = '"ByLayer"
StartPoint = (4.64998 2.92844 0.0)
Thickness = 0.0
Visible = -1
Methods supported:
ArrayPolar (3)
ArrayRectangular (6)
Copy O
; Delete
; GetBoundingBox (2)
; GetExtensionDictionary ()
; GetXData (3)
; Highlight (1)
; IntersectWith (2)
; Mirror (2)
; Mirror3D (3)
; Move (2)
Offset (1)
Rotate (2)
Rotate3D (3)
ScaleEntity (2)
SetXData (2)
TransformBy (1)
Update O

As you can see, this is a very helpful function for inspecting entities for their properties
and methods. It is also helpful for inspecting any other objects, including application

18

objects, documents, collections, and so forth. A very handy trick is to define a utility
function that will dump any object you specify with less typing:

(defun dump (obj)
(cond

((= (type obj) “ENAME)
(vlax-dump-object (vlax-ename->vla-object obj) t)

)
((= (type obj) “VLA-OBJECT)
(vlax-dump-object obj t)
)
)
)

To use this, simply do your magic at the command prompt and define objects assigned to
symbols and dump them in the following general manner...

Command: (setq e (car (entsel)))

Select object: <pick something>

<blah blah>

Command: (setg o (vlax-ename->vla-object e))
<blah blah>

Command: (dump o)

<bang! Dumps all the goodies here..>

ActiveX vs. DXF?

Can ActiveX do everything you need in VLISP to handle all your programming chores?
No. Can DXF do everything ActiveX can accomplish? No. There are quite a few
situations where the older AutoLISP approach is the only solution to a given problem,
and vice versa. In some situations, you could use either one, but the AutoLISP approach
will turn out to be the most efficient or manageable choice. You may reply “Oh sure,
that’s what you think.” But let’s look at some scenarios.

Selection Sets

You can create and iterate selection sets, or more properly named picksets, using either
AutoLISP or Visual LISP. However, you will quickly find that dealing with selection
sets in AutoLISP is far easier and less problematic than with VLISP.

Point Lists

Actually, any LIST structure is easier to manipulate in AutoLISP than is the case with an
array using VLISP. While both are powerful and flexible, constructing and modifying
LIST structures in LISP is much simpler than that of ARRAY structures using VLISP.
Entity Properties

While most properties are easier and more intuitive to access with ActiveX using VLISP,
some are not exposed and are therefore only available from DXF code values using
AutoLISP. For example, dimension line control points of Linear DIMENSION objects
(acDbRotatedDimension), control points of LEADER objects, and the infamous

19

BLOCKDEF description property (which isn’t completely available to either AutoLISP
or VLISP, it is only accessible using a separately loaded function library).

Rather than bore you to tears with detailed examples, which 1 may do later on anyway,
suffice it to say that there are still situations that warrant using AutoLISP even though
Visual LISP adds so much power and potential to what you can do.

And the Winner Is...

You! You win because you have more options available to you to reach your goals in
shorter time, with more robust options, and with more predictable and reliable results.
The oldest argument in the world of AutoCAD programming is what language or API is
the “best” to work with. The argument itself is stupid and makes no meaningful point. Is
a pipe wrench the “best” tool? Maybe for mauling pipes, but not for driving nails.
Different tools are intended for different jobs. Master the ones that you need to build the
best product possible. You’ll find that no one tool can do it all unless you’re doing very
little to begin with.

LISP itself was intended for very rigorous flexibility and extensibility. Like all
programming languages, you can do things with LISP that you simply CANNOT do
within other languages. For example, it is not a simple feat to define a recursive self-
redefining function in VBA, nor a nested function structure. List manipulation in LISP is
easier and more efficient than in other languages because that is the crux of what LISP
was built to handle. Some reading this might retort “why would you want to do those
things anyway?” and snicker, with their pinky in the air, sipping their glass of $10 wine.
Well, once you’ve found the power in using these capabilities, your eyes will open and
your voice will say “Ahhhhhhhhhh, that’s cool!”

While Auto/Visual LISP lacks many of the modern ammenities such as dialog form tools,
it does provide a crude DCL form building programming language for building forms the
stone age way: brute force coding. Its elegance is subtle and obtuse, not overt and
aesthetic, with just a hint of minty freshness.

So, what is the best tool? They all are. Well, except possibly COBOL, but even it has its
uses.

20

Chapter 3 — Using ActiveX with Visual LISP

In this chapter we’ll discuss more examples using ActiveX capabilities within Visual
LISP. First, we’ll start off with the technological environment of ActiveX, including
things like objects, object models, collections, properties, methods and so forth. Then
we’ll dig into the details of certain parts of ActiveX technologies. Understanding
ActiveX functionality is essential to working with it using any language.

ActiveX is basically an object-oriented medium, meaning that it behaves in a manner that
uses objects and object relationships. 1 am not going to explain object-oriented issues in
depth, that’s best left for more focused text books and what-not. However, | will attempt
to give an overview of some of the basic object-oriented aspects for the sake of gaining a
basic understanding.

Classes

Everything in an object-oriented environment begins with Classes. Classes are abstract
frameworks, or templates, for describing what form objects should take and how they
should behave and interact. Classes define categories of object types in a sense. For
example, an automobile might be a class of vehicles. Vehicles could be the parent class
and automobile would then be a sub-class. In turn, you can get more specific and define
additional sub-classes such as station wagons, vans, and sports cars.

Classes do not address specific instances; they describe aspects about the instances in
advance of their use. When you use a class you are said to invoke an instance of that
class. The result of invoking a class is usually that of creating an object. An object can
be a single entity or a container that holds yet more objects within it.

Examples:
Class: MechanicalTool
Sub-Classes: Power-Assisted, Manual
Derived Classes: MechTool/Power-Assisted/Gas-Powered/Lifting

Derived Classes: MechTool/Manual/Handheld

Instances:

21

Derivation and Inheritence

It’s probably easiest to explain derivation, or sub-classing, using the analogy of a tree
structure. As you drill down into lower levels of, say, a folder structure, you will most
often discover it is a virtual model from general to specific as you descend downward.
The top-most folder is very general, and each level of sub-folder below it is gradually
more specific in nature. This is very much like derivation. Each sub-class, or derived
class, is a further refinement or specification of a more general class from which it
descends from.

The aspects of how each derived class inherits the qualities of its parent class is referred
to as inheritence. This implies that the sub-class contains all of the aspects of its parent
class from which it was derived. This includes properties, methods and events (reactor
types in Vlisp speak). This is much more relevant and apparent when working with
languages like VB, VBA and C/C++/C#, which make the object relationships more easily
viewed and understood. Visual LISP by contrast does nothing to make this apparent and
you as the programmer should be aware that you must rely upon additional studying and
tinkering to fully understand the object class relationships you will deal with.

While it may seem contradictory to the intent this book, I would strongly recommend that
you keep the VBAIDE open while programming in VLISP, so that you can quickly
access the Object Browser in VBAIDE. By pressing F2 in VBAIDE, you can open the
Object Browser and have instant access to class documentation, properties, methods,
events and more. It would have been nice if Visual LISP included the Object Browser,
but you are left to dig with a shovel using (vlax-dump-object) < more on this later.

'f; Object Browser E]@
AutoCAD v| o« 2
R M o
Classes Mernbers of ‘AcColorethod'
=7 AcAlignment | |2 acColordethodByAc
28 AcAlignmentPointac E acColorMethodByBlock
=P AcAnglelinits @ acColorethodByLayer

=F AtARKDemandLoad = acColorMethodByRGE

2@ AcAttachmentPoint & acColorMethodForeground
=7 AcAtiributeMode
=¥ AcBoolean

2@ AcBooleanType
=R AcColor

=P AcColorethod

=F AcCoordinateSysterr

<8 AcMimarrmhe ad T

ConstacColorMethodByRGB = 194 (&HCZ)
Member of AutoCAD AcColorMethod

EE—————
Objects

An object is an instance of a class. A class describes the rules for what an object must
support in order to be one of its members. An object has inherent properties, and may
also have inherent methods and events. Properties are attributes that define how the
object behaves or reacts. Methods are built-in functions for accessing or modifying
object properties or certain behaviors. Events are notifications sent by objects in
response to specific actions they perform or actions that are performed upon them.

22

Using the automobile class example above, an object might be a particular car. Say, your
car, which has a distinct configuration (make, model, color, options, and ID number).
You could say that your car is an instance of the automobile class, or some class derived
from the automobile class, such as a “junk-car” class.

Object Model

Object > -Oblir?)getrties
| e Methods
| | . Events
Object Object

Object Models

An Object Model is an arbitrary schema, or arrangement of class relationships that define
a hierarchy and means for deriving one object from a higher level of classes. An object
model is independent of the languages or tools used to access it and work within its
logical framework. The same model exists whether you’re working with Visual Basic,
VBA, Visual LISP, Delphi, Java, C/C++, VB.NET, C#NET or any other language that
incorporates or provides an ActiveX interface. This does not mean that all features of the
object model are equally supported in all languages. They often are not. Some features
are only accessible or are more easily accessed within some languages than from within
others.

One analogy might be that an Object Model is a house and its arrangement of rooms,
doors and windows. The people that enter and use the house all deal with the same
house. In this case, the house and rooms are the object model and the people are the
programming languages. Hopefully, you get the point.

Class Inheritance

An Object Model always begins with a root or base object. In the case of AutoCAD, the
base object is the AutoCAD Application object, also called the AcadApplication object.
This provides the base properties, methods, events and collections from which all other
objects and collections are derived. For example, the AcadApplication object has a
collection of Documents (the Documents collection), which in turn has one or more
Document objects within it. Each Document object has its own objects, collections,
properties and methods and so on.

You can navigate an Object Model downward into sub-level objects and collections, as
well as navigate upward to parent objects and collections. This model becomes very
powerful for enabling applications to directly access and manipulate the environment to
perform an almost limitless set of tasks. It also keeps things neat and organized, which
always helps when developing software solutions.

23

Collections and Dictionaries

A Collection is a group of similar objects that have a common parent container. This
container has a unique name and in most cases will provide its own methods for
accessing the objects it contains. A Dictionary is a special type of collection that allows
you to extend your own collections with names. Visual LISP does not provide a means
for creating or doing much with collections. It does allow you to iterate them, modify
members, add and delete members. A dictionary allows you to add your own dictionaries
as well as populate them, iterate them, add, modify and delete their members as well as
add, modify and delete the dictionaries themselves.

Some common collections within AutoCAD are Documents, Layers, Dimension Styles,
Linetypes, Blocks and so forth.

Some common dictionaries within AutoCAD are PageSetups, Layouts (yes, they are also
stored as a dictionary), Layer States, and Xrecord objects. The AutoLISP dictionary
functions are dictadd, dictnext, dictremove, dictrename, dictsearch and
namedobjdict. In Visual LISP, you have access to the ActiveX dictionary object
methods, properties and event reactors as follows:

Methods Properties Event/Reactors
AddObject Application Modified
AddXRecord Count

Delete Document
GetExtensionDictionary Handle

GetName HasExtensionDictionary
GetObject Name

GetXData ObjectID

Item ObjectName

Remove OwnerlD

Rename

Replace

SetXData

Properties, Methods and Events

Properties are simply descriptive attributes associated with an object or a collection.
Examples could include Name, Height, Width, Rotation Angle, Scale, Color, Layer,
Linetype and so forth. Properties will vary according to what type of object they are
associated with, but some properties are common to all objects and collections.
Collections and Dictionaries usually provide the Count and Name properties, as well as
the Item, and Add, methods. Only dictionaries will provide a Delete method since you
can’t delete Collections from Visual LISP.

Methods are built-in functions that an object provides to access or modify special
properties or perform special actions upon the object itself. Examples of common
Methods include Rotate, Erase, Copy, Scale and Offset. You might notice that these look

24

just like AutoCAD Modify commands. Well, in essence they are just that, but with a
slight difference.

Whereas AutoCAD Modify commands are general in nature, they must validate object
usage for each execution, Methods are provided by their host object and therefore, only
supported Methods are provided by each object. Confused?

Stated another way, the OFFSET command can be used at any time, but if you try to
OFFSET a TEXT object you’ll get an error message from AutoCAD. However, the
TEXT object itself provides a variety of Methods such as Copy, Rotate, Scale and Move
but not Offset. So you can “invoke” a method from an object and be assured that it is
valid for use with that object.

Events are actions that an object or collection can generate from various activities, which
can be detected and responded to as well. This is referred to as event-driven
programming when events are used in combination with reactions to those events.
AutoCAD provides a powerful set of event-response tools called Reactors that enable
you to post listening devices in the drawing environment that respond to various Events.
For example, you could create a Reactor to respond to an Erase event when an object has
been erased in the active drawing. This is only one example of Events and Reactors.

Property Relevance

It is important to understand that you should NEVER assume all properties are available
to all objects or collections. There are two functions in particular that are valuable for
ensuring your code performs properly when dealing with properties and methods at
runtime: (vlax-property-available-p) and (vlax-method-applicable-p). These
two functions are just two of the Visual LISP predicate functions that provide Boolean
tests for whether a condition is True or False (non-nil or nil in LISP terminology).

The syntax for these functions is as follows:

(vlax-property-available-p object property)
(vlax-method-applicable-p object method)

Properties are related to the type of object they are related to. For example, a Circle
object would have a Diameter property, but Line objects would not. As an example of
how Properties vary according to object types, the following code would crash with an
error when picking a CIRCLE entity:

(if (setq ent (entsel ‘“\nSelect object to get property: “))

(progn
(setq obj (vlax-ename->vla-object (car ent)))
(princ
(strcat ‘“\nLength: “ (vla-get-Length obj))
)
)

)

25

But, if you verify that the property is valid for the relevant object first, it would perform
properly as shown in the example below:

(if (setqg ent (entsel “\nSelect object to get property: “))
(progn
(setq obj (vlax-ename->vla-object (car ent)))
(if (vlax-property-available-p obj “Length)
(princ
(strcat ‘“\nLength: *“ (vla-get-Length obj))
)

(princ “\nObject has no LENGTH property..””)
)

)
)

Unfortunately, there is no direct means to fetch a list of all properties for a given object in
such a way as to iterate it for programmatic purposes. However, you can fetch a list for
informational purposes that can help you greatly.

To inquire as to what Properties and Methods a given object has you use the (vlax-
dump-object) function on that object. The syntax of this function is (vlax-dump-
object object show-methods) where the show-methods argument is either nil or non-
nil. If non-nil, it shows the supported Methods for the object; otherwise Methods are
simply not shown.

_$ (setq acadapp (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00a8a730>

_$ (vlax-dump-object (vla-get-documents acadapp) T)
; IAcadDocuments: The collection of all AutoCAD drawings open in the
current session
; Property values:
Application (RO) = #<VLA-OBJECT lAcadApplication 00a8a730>
Count (RO) =1
; Methods supported:
Add (1)
Close O
Item (1)
Open (2)
Figure 3-1 — Documents collection properties and methods.

Figure 3-1 shows the properties and methods of the Documents collection object. You’ll
notice that the first line of output shows the internal object reference (IAcadDocuments)
along with a description of what it represents, and then it lists the available Properties and
Methods.

.fil”
The following command definition may come in handy for you to explore the
properties and methods of selected entities. There is no error handling provided, but it is

nonetheless a useful little tool.

(defun C:DUMP (/ ent obj)
(while (setg ent (entsel ‘“\nSelect entity to get object data: ‘))

26

(setq obj (vlax-ename->vla-object (car ent)))
(vlax-dump-object obj T)
(vlax-release-object obj)

)
(princ)
)

1‘“’!
The enclosed (RO) beside certain Properties denotes Read-Only, in this case all

the properties are read-only. The enclosed numbers beside the Methods indicate how
many arguments are required to use each method.

To access a Property, you use the (vla-get-xxx) function, or even the more generic
(vlax-get-Property) function, either will work. The syntax for the first form is (vla-
get-xxx object) where xxx is the property name. When using the (vlax-get-
property) function, the syntax is (vlax-get-property object propertyname),
where the propertyname can be either a double-quoted string or a single-quoted name.

(vlax-get-property object property) or
(vla-get-property object) or
(vlax-get object property)

Returns the value assigned to the named property of the object. If the property
does not exist for this object, an error is generated. For example, if you request
the “Diameter” property from a Line entity, this will generate an error.

Arguments:
Object — A vla-object
Property — A valid property with respect to the object.

Examples:

(vlax-get-property objLine “Length’)
(vlax-get-property objLine “Length)
(vla-get-Length objLine)

All of these expressions will do the same thing.

Property names are not case sensitive but examples throughout this book will generally
capitalize the first letter for clarity. You will find that the first two options above are
easiest to use in general, however, there are situations that require using the second two
options. This is particularly with respect to interfacing with external applications like
Microsoft Excel or Word. A fourth form viax-get is a leftover from R14 for backwards
compatibility only, and no longer works reliably in AutoCAD 2004.

27

Using Methods

Using the example in Figure 3-1, you can see that the Documents collection object
supports four Methods: Add, Close, Item and Open. The Item Method requires one
argument to be used (hence the (1) shown beside that method in Figure 3-1), this is the
index or name of the document to be fetched from the collection.

An interesting feature of the 1tem method (in general) is that it can accept either a string
or an integer value argument. When given an integer argument it simply returns the (nth)
item of the collection, where 0 is the first item. When given a string value, it attempts to
fetch the item by its name property. The 1tem(name) method is not case sensitive, which
is very useful for fetching names without having to first convert string cases.

{iP!

If you are familiar with Visual Basic or VBA and the use of default
methods or default properties, you should be aware that this feature does not exist
in Visual LISP. For example, in Visual Basic, accessing the 1tem method can be

done using either of the two following ways:

Object.ltem(12) or Object(12) or Object(“Name”)

This is because the 1tem method is the default method for most objects in VB or
VBA. Visual LISP does not support this feature and therefore requires that you
spell out all properties and methods for every use, every time. Don’t’ feel bad
though, Microsoft has dropped support for default properties and methods in all
NET languages. The following Vlisp examples should demonstrate this better:

(vlax-invoke-method documents “lItem” 12) will work..
(vla-item documents “Drawingl.dwg’) will work..
(vlax-invoke-method documents 12) will not work.

Using the example in Figure 3-1, the Item method might be used in any of the following
ways:

e (vla-ltem documents 1)

e (vla-1tem documents “Drawingl.dwg’)

o (vlax-invoke-method documents “ltem” 1)

e (vlax-invoke-method documents “Iltem “Drawingl.dwg’)

(vlax-invoke-method object method [arguments]...) or
(vla-method object arguments) or
(vlax-invoke object method [arguments] ...)

Invokes a method associated with object and supplies any required arguments to
that method. If successful, returns a result. If the requested method is not
provided by the object, an ActiveX error is generated. For example, requesting
the “Offset” method from a Text entity will generate an ActiveX error.

28

Arguments:
Object — A vla-object
Method — A method exposed by the object

Arguments — Any required arguments to supply to the method

Examples:

(vlax-invoke-method objLine “Move” pointl point2)
(vla-Move objLine pointl point2)
(vlax-invoke objLine “Move” pointl point2)

All of these of these examples do the same thing. This is generally true for most
AutoCAD objects, but not for objects created from imported TypeLib interfaces
or external applications or ActiveX components. You should use the first form
for working with external application objects, however you can use the second
form for internal objects. The third form is a leftover from R14 for compatibility
only and no longer works reliably in AutoCAD 2004.

1‘“”

While you opt to use either of the two forms of Get/Put on Properties and
Methods, you may find it more flexible to use the longer form (e.g. vlax-put-property) as
opposed to the shorter form (e.g. vla-put-color). The reason is that by separating the

property name from the function, you can define functions and iterative statements that
can accept a list of properties and their associated values. For example...

(defun MapPropertyList (object proplist)
(foreach propset proplist
(if (vlax-property-available-p object (car propset))
(vlax-put-property object (car propset) (cadr propset))
)

)
)

Be careful when trying to apply this approach to methods, as the arguments list for
methods varies with respect to the object and method. Some methods don’t take any
arguments, while others will vary in length.

Data Types

Data types are a means for describing the type of values a given object or property can
contain. Examples of data types include Integer, Double, Currency, Date, String, and so
on. While AutoLISP has enjoyed type independence for years, Visual LISP does as well,
but not always. Within AutoCAD, you can remain type independent as you can with
AutoLISP, but when it comes to interacting with other applications, such as Microsoft
Excel, you will inevitably have to come to terms with data types and use them wisely.

29

Being type independent is not a free lunch either. The price paid comes in the form of
inefficient processing. When you declare data type in advance, you are telling the
compiler to carve out only enough resources to suit that expected data type. To store data
of type Integer for example is far less demanding than storing a “long” Date value.

When you work without data types, everything is automatically allocated for the largest
possible data type to make sure whatever is used will fit in the available resources. The
result is that the application is more bloated than it really needs to be, both in terms of
initial load size as well as runtime resource allocation. AutoLISP never forced
programmers to declare data types ahead of runtime. Therefore, it always used the
maximum allocation for a given symbol as a best guess. Even when using (getint), the
variable itself isn’t declared until runtime, so AutoLISP was not capable of efficiently
predicting allocation needs at design time.

This is essentially why applications developed in languages like C++, Java, and even
Visual Basic are usually faster (when compared to similarly functional coding in type-
free languages). They ensure leaner execution ahead of time in order to ensure faster
performance at runtime. AutoLISP does not do this and is therefore a much slower
processing language medium. Visual LISP is much better, but only if you leverage the
new features to their fullest extent wherever possible. 1 must admit though, that even
Visual LISP does not enforce design time data type declaration. It simply relies upon,
and respects data types much more rigorously than AutoLISP during runtime.

For anyone familiar with VB, VBA and VBScript programming, Visual LISP is more
like VBScript in terms of strictness than AutoLISP. For example, there is no equivalent
in Visual LISP to the DIM statement in VB or VBA. While VBScript does not enforce
data types, it at least supports OPTION EXPLICIT to force variable declarations.

Constants and Enumerations

A Constant is a special data type. It is just what it sounds like, a value that cannot be
changed. This is sometimes referred to as being static. Often, Constants are provided by
the programming language or by the hosting application itself, as a means of
convenience. For example, the acByLayer constant can be substituted for a property
value in place of 256. The name value is easier to understand and remember than an
integer value. For example, the two expressions shown below are functionally identical:

(vla-put-color object acBylLayer)
(vla-put-color object 256)

Enumerations are logical groups of constants that are used to identify a range of
constant values. For example, you might use colors 1, 2, 3, 4, and 5 but having constants
for these such as acRed, acYellow, acGreen, acCyan, acBlue, acMagenta and
acwhite are handy for clarity as well as sensible coding. Ranges of related constant
values of this type are called enumerations. See appendix A for a list of standard
AutoCAD enumerations.

30

1‘“’!
Not all ActiveX enumerations are provided within Visual LISP. For example,
the standard Decimal and Short data types are not mirrored as vlax-vbDecimal Or vlax-

vbsShort. Refer to Chapter 6 for more information on data types.
Variants and Safearrays

In the section on Data Types above, there was mention of using the largest allocation
available for type-free declarations, such as (setq) expressions in AutoLISP. Actually,
this entails allocating for a Variant data type. A Variant is simply a catch-all data type
that provides enough resource space to contain any other data type, be it numeric, date,
string, or whatever. A Variant data type is the product of ActiveX actually, but the
concept is more generic in nature and has existed long before ActiveX was around.

Visual LISP actually holds all converted ActiveX data as Variants with a specifier that
denotes what specific type is contained within it. This sounds confusing but it’s really
very simple. The container is a Variant which is holding a Currency data type value
within it. When you assign a new value to the object, you must provide that specifier to
make sure that the data is properly stored. This is especially true when you are passing
values between AutoCAD and other applications such as Microsoft Excel.

In addition to posting values, you can query the nested data type from a Variant value, as
well as convert the value properly into a relevant LISP data type. For example, you
might query a Variant object value that contains a Double value within it. You would
then read that value as a REAL data type in LISP. Visual LISP provides plenty of
functions for creating, reading, and modifying Variant data values in a LISP
environment.

Safearrays are something like LIST objects in AutoLISP. The main difference is that
they are static, meaning that they cannot be stretched or changed in terms of how many
members they can store. This prevents unwanted errors generated by attempting to
assign or fetch members beyond the length of the array. This is why they are called
“safe” actually. Any LIST structure passed into ActiveX must be converted into a
Safearray first. Any LIST oriented data fetched from an ActiveX object should be
converted to a LIST data type for use by LISP functions such as (car), (nth), (assoc),
(mapcar), (member) and so on. Visual LISP provides plenty of functions for creating,
manipulating and reading Safearray data values.

For more information on Variants and Safearrays, refer to chapter 6.
Namespaces
A Namespace is a virtual space of resource allocation in which a process runs and

interacts with other resources in that space. But it can at times communicate with other
processes in other Namespaces. Think of Namespaces as bedrooms. Your application

31

might be a person working in one bedroom; a process in a specific namespace. Another
application can be working in an adjacent bedroom (namespace) as well. The two can
remain independent and isolated or they can be made to pass data between each other for
communication. This is essentially how namespaces work.

Some of the advantages to using namespaces are that the processes in a specific
namespace are isolated from those of other namespaces and this prevents them from
stepping on each other (trying to reserve resources in contention). It also enables direct
loading and unloading of processes by their namespace. In other words, it’s somewhat
like being able to unplug one of the bedrooms from the house as if it were built in
modular form. Removing one bedroom wouldn’t affect the other rooms or processes they
each have active.

Probably the one significant disadvantage to using namespaces is that they incur some
overhead on the operating system as well as their host application. In order to manage a
given namespace it has to be given its own range of memory addresses and pointer
allocations. This consumes additional resources to track and control the namespace,
which in turn provides the means to directly access it to unload it or pause it if necessary.

AutoCAD provides its own internal management of namespaces within Visual LISP, as
well as within ObjectARX and VBA. This is yet another powerful improvement
provided by Visual LISP over AutoLISP. Actually, each opened document is its own
namespace as well (if you’re not working in single-document mode). The effects of this
can be seen when setting a variable in one drawing session and attempting to read it in
another. There are ways to pass such variables between drawing sessions though, and
we’ll discuss these in Chapter 10.

Interfaces and Type Libraries

Interfaces are a means for connecting to the object models of other ActiveX processes or
components. When you want to be able to tap into specific properties, constants, or
methods of other applications, you first have to define an interface to load the object
model of that target application. For example, maybe you want to be able to work with
Microsoft Excel to store some AutoCAD information directly into a spreadsheet file
using Excel’s own tools from Visual LISP. This requires that you define the interface,
and that in turn allows for the use of a Type Library, or TypeLib.

To use a Type Library, it must be loaded into memory and certain interface pointers have
to be defined. Visual LISP provides a set of functions specifically for loading and
configuring Type Library interfaces.

(vlax-import-type-library
:tlb-filename name string
:methods-prefix string
:properties-prefix string
constants-prefix string

32

Imports a type library reference into the current namespace.

Arguments:

:tIb-filename string — (string) is the path and filename of the TypeL.ib file
:methods-prefix string — (string) is an arbitrary prefix string identifier
:properties-prefix string — (string) is an arbitrary prefix string identifier
:constants-prefix string — (string) is an arbitrary prefix string identifier

Example:

(vlax-import-type-library
:tib-filename “c:\\myfiles\\typelibs\\tlfile.tlb”
-methods-prefix “dsxm-"*

properties-prefix dsxp-"
constants-prefix 'dsxc-"

)

This example imports the type library interface to an external application or
control defined in the file tifile.tlb. The remaining arguments define the prefixes
for methods, properties and constants exposed from the type library interface.

If this type library provided a method named AddNumbers, it would be used in our
Visual LISP code as dsxm-AddNumbers. What’s interesting is that once you’ve actually
imported the type library and this expression has succeeded, the Visual LISP will
recognize all defined properties, methods and constants from the external application and
color-code them in blue as with any built-in LISP function. This is another reason that
the Visual LISP IDE is helpful for coding and providing features that improve your
ability to spot code errors early.

AutoCAD Microsoft Excel

VLX Application Excel API

Type Library
Interface

Figure 3-3 — Type Library Interfacing.

A Type Library is simply an interface that exposes all of the object model members of
one provider to other applications that request it. When you load a type library, it
immediately defines and identifies all of the publicly exposed properties, constants and
methods of it’s related application provider to the application consumer that is using it.

33

In Figure 3-3, the Excel Type Library has been loaded to interface Visual LISP with
Excel’s object model and use the tools it exposes. This can save a lot of time and
headache by giving you direct access to tools built into Excel that will do what you need
without having to attempt to reinvent the wheel in Visual LISP alone. An example of
how this might be used is shown below and in Figure 3-4.

For example, when supplying a constant value as an argument to an Excel function
through a call from Visual LISP, you could use the constant enumeration name instead of
the actual underlying value to keep your code clear and understandable. This also saves
you from having to look up all the enumerations in Excel and translating them in Visual
LISP. If Excel provides a constant such as put-cellcolor you can use that directly from
Excel.

Visual LISP requires TypeLib information to determine whether a method, property or
constant for an object is available. Some objects may not have any TypeLib information
available, such as the AcadDocument object.

(vlax-typeinfo-available-p object)

Returns T if TypeLib information is available for object. If none is available, it
returns nil.

Arguments:
Object — A vla-object.

(defun Excel-Get-Cell (rng row column)
(vlax-variant-value
(msxl-get-item (msxl-get-cells rng)
(vlax-make-variant row)
(vlax-make-variant column)
)
)

(defun Excel-Put-CellColor (row col intcol 7/ rng)
(setq rng (Excel-Get-Cell (msxl-get-ActiveSheet xlapp) row col))
(msxl-put-colorindex (msxl-get-interior rng) intcol)

Figure 3-4 — Example of using Type Library enabled code with Excel.

The second function definition in Figure 3-4 (Excel-Put-CellColor) provides a means
for applying a color fill value to a given cell in an Excel worksheet from Visual LISP.
This is possible by using the exposed interface methods from Excel that were provided by
loading the Excel Type Library first. The type library items appear above with an msxI-
prefix.

Once you invoke a TypeL.ib interface, the referenced functions are then recognized by the
VLISP editor syntax engine. When you type them in properly, they change color to show
that they are indeed recognized as a valid function from the external TypeLib interface.
This is the basis of what makes this a useful coding practice: syntax awareness.

34

1‘“’!

Type Libraries come in many forms, they are most often .TLB files, but can also
be .OLB, .DLL and even .EXE files. It’s worth noting that Microsoft Office 97 and 2000
normally use .TLB files, however Office XP uses the .EXE files themselves to provide
the type library interface definitions to other applications. Consult the documentation for

whatever external application or service you want to work with for information about
how it exposes its ActiveX type library information.

Microsoft Office TypeLib Versions

Product Ver Example

Office 97 8 Excel.Application.8
Office 2000 9 Outlook.Application.9
Office XP 10 Word.Application.10
Office 2003 11 Powerpoint.Application.11

Another handy tip is to look in the Windows registry under HKEY_CLASSES_ROOT to
find all of the registered API libraries for every service and installed application. There
are also many freeware and shareware tools on the Internet to find, organized, view and
inspect all the type libraries registered on your computer. These are often better than
looking in the registry, since they can read the property pages within type libraries to
show the internal documentation. Property pages are where the documentation
information is drawn from when picking on objects in the VBA Object Browser.

If you omit the version identifier, Windows will query for the “current version” by
reading the CurVer sub-key under the class GUID entry in HKEY_CLASSES ROOT.
For example, you may likely see both Excel.Application and Excel.Application.10
together in this registry. But if you look under Excel.Application, it will have a CurVer
subkey that most likely is set to the value “Excel.Application.10” (assuming you have
Office XP or Excel 2002 installed). It will also have the same CLSID value. This is
essentially how upgrades redirect the type library interface to all external applications:
using the registry.

35

Chapter 4 — Debugging Code with Visual LISP

This chapter will focus on using the testing and debugging tools in Visual LISP to catch
problems early and make your code more bug-proof. Debugging is as much a part of
successful code development as mowing the lawn is for home ownership. It can be
tedious and painful at times, but ignoring or neglecting it will certainly cause you greater
pain in the long rum.

The sooner you get familiar and comfortable with using the tools for debugging; the
better off you’ll be in a variety of respects. Not the least of which will be improved code
quality and better customer satisfaction (putting smiles on the faces of those that pay your
salary never hurts).

Breakpoints

Breakpoints are a tool for placing markers in your code to trigger a pause during
execution automatically. If you are having a problem with your code in a particular part
of the execution, place a Breakpoint at the beginning of that section and run the code
until it hits that Breakpoint. Then you can use one or more of the following tools to dig
deeper into the execution in a methodical manner to find the cause of the problem and fix
itin less time.

Example: Load the code file ERRORTEST1.LSP shown in Figure 4-1 and run the
GETPROPS command in a drawing that contains a few CIRCLE, ARC and LINE
entities.

& errortestl.lsp |_ O]
{defun C:GETPROPS =
{ / ent obj lay col 1ltp lwt dia len)]

{if (setq ent {entsel "“nSelect entity to query: ")}
{progn
{setq obj (vlax-ename->ula-object (car ent))}
{setq lay (vla-get-layer obj}
col (vla-get-color obj)
1tp (vla-get-linetype obj)}
lut (vla-get-lineweight obj}
dia (vla-get-diameter obj)
len (vla-get-length obj)
)
{foreach p {list lay col 1ltp lwt dia len}
{(princ "“yn--->")

(princ p)
3
3
)
{princ)
] -
A M

Figure 4-1 - ERRORTESTL1.LSP example code

36

You’ll notice that when you select a Line entity, the code crashes with an error message
“error: ActiveX Server returned the error: unknown name: Diameter”.

The same happens if you pick TEXT or POINT objects. Maybe you can see the cause of
this error in the example code already, but let’s pretend that this is a far more complex
piece of code and you can’t easily find the cause of this error by looking at the code.
What to do now? Place a breakpoint in the code, load it and run it again. This time,
when it gets to the breakpoint location in the code, the execution pauses, and you can
begin debugging the code execution using the various tools provided in the Visual LISP
IDE. One of these tools is called Stepping.

Place your editor cursor directly in front of the line that contains (setq lay ...) and press

the F9 key, or pick the K button, to toggle the Breakpoint ON at that location. You’ll
see the beginning parenthesis (blocked in red. This is one of the visual aids provided by
the VLISP IDE editor and it is very helpful indeed. Once you’ve toggle the Breakpoint

ON, load the code into AutoCAD again using the 3 button, or press CTRL+ALT+E to
do the same thing.

e errortestl.lsp M=l
(defun C:GETPROPS
{ F ent obj lay col 1tp lwt dia len}
{if (setq ent (entsel "“ynSelect entity to query: "))
{(progn
{setq obj (vlax-ename->vla-object (car ent})})
i{setq lay (vla-get-layer obj)
col (vla-get-color obj)
1tp (vla-get-linetype obj)
lut (vla-get-lineweight obj}
dia {uvla-get-diameter obj}
len {ula-get-length obj)

FS
—
—

)
{foreach p (list lay col 1ltp lwt dia len)
{princ "Sn——->")

(princ p)
)
)
)
{princ)
] -
o | W

Figure 4-2 — ERRORTEST1.LSP with a BreakPoint set on Line #6

Now when you run the GETPROPS command and pick an entity, it will stop on that
breakpoint and jump back to the VLISP IDE editor to await your next command. You’ll
notice here a few things are a little different now. First, the block of code that is
contained within the matching parenthesis is now highlighted. Second, you’ll see that the
DEBUG toolbar buttons are now enabled (no longer grayed out). This toolbar is now the
main tool for continuing your debugging process.

37

[OTW |~ 2 Wérd 0

The first three buttons at left are the Stepping control buttons (described in the next
section in more detail), followed by the buttons for Continue, Quit and Reset. Then the
next three buttons are Toggle Breakpoint, Add Watch, and Last Break, followed last by
the Breakpoint Step status button. This last button simply shows a visual queue as to
whether the current process is stopped before or after a matching subset of parenthesis. It
can help to look at this to know whether an error is thrown before the expression or just
after it was evaluated.

Go ahead and pick the Step Into button @ Keep picking on that button and watch how
the code continues to execute one expression at a time. This will continue until the
execution encounters the expression that generates the error. At that point, execution is
aborted and the error message is displayed.

Hopefully, you’ll discover that the cause of the error is that this code assumes certain
properties are available without first verifying that they indeed are available. The
Diameter property is obviously not available when picking a LINE entity. Nor is the
Length property available when picking a CIRCLE entity.

Stepping

As you may have surmised in the above example, stepping is simply a means of walking
through code execution one line or one expression at a time. This lets you pause the
execution and control the frame advance to proceed along until you get to a point in the
code where you want to inspect what’s going on or reveal an error or specific condition.

You can Step Into © , Step Over F or Step Out Of W which are common stepping
methods in all programming languages, not just Visual LISP.

Step Into — Continues advancing execution by evaluating the next expression from the
innermost nested statement to the outermost statement before advancing to the next
expression or statement.

Step Over — Skips the currently highlighted statement block and advances execution to
the next expression or statement.

Step Out Of — Skips out of the breakpoint block and advances to the next expression or
statement. If there are no more breakpoints beyond this point, execution continues
uninterrupted.

Animation
Another method of Stepping is to use Animated Execution. This feature executes the

code normally but pauses after each expression is evaluated to highlight the block of code
in the editor window. After each pause, the code advances automatically to the next

38

expression. The pauses are processed using a timed delay value that you can adjust to
suit your needs or preferences.

Watches

A Watch, in the context of debugging, is a marker placed on a particular object or symbol
to continually display its properties during program execution. Adding a watch to a
particular variable (symbol) enables you to see its value assignment during the course of
a step-execution following a breakpoint encounter in the process. To Add a Watch, select
a symbol by highlighting the code in the editor window, and then pick the Add Watch

button & or press cTrL+w. This opens the Watch window and adds a watch reference
into the watch list. You can watch as many symbols at a time as you desire, but keep in
mind that the more you add, the more cumbersome it can be to clearly see what’s going
on.

Figure 4-3 shows a Watch being placed on the symbol “p’ in the (foreach) section of the
code. By moving the breakpoint to the beginning of the (foreach) section, this will
enable the Watch to display each value of the symbol ‘p’ as it is processed through the
(foreach) iteration.

4 errortestl.lsp = =]
{defun C:GETPROPS -
{ 7 ent obj lay col 1tp luwt dia len} I

{(if (setq ent {entsel "%nSelect entity to query: ")}
(progn
{setq obj (vlax-ename->vla-object (car ent}))})
[isetq lay (vla-get-layer obj)
col (vla-get-color obj)
1ltp {uvla-get-linetype obj}
lwt {ula-get-lineweight obj)
dia {uvla-get-diameter obj}
len (vla-get-length obj)
3
{foreach p (list lay col 1ltp lwt dia len)
{princ "Sn——-3>")

(princ p)
) 6 (1 21103
)] F = nil
{princ)
) -
A vl 4
=]

Figure 4-3 — Adding a Watch to the ‘p’ symbol.

Note that initially, P=nil, since the code is not executing and there is no value assigned to
‘p’ as of yet. When the (foreach) loop is entered, P will display the values for each of
the symbols in the list (lay col Itp Iwt dia len) respectively, even if they are set to
nil.,

39

Tracing

There are several Trace features provided by Visual LISP. One is a Command Trace,
which places a marker on a given command (or all commands) and displays a notification
in the Trace Log Window whenever the command (or any command) is called from your
active code execution. If the VVLISP IDE is open, the Trace log window is displayed and
any calls are posted there during execution.

If the VLISP IDE is not active, the trace dump is posted to the AutoCAD command
prompt window. However, once Visual LISP (IDE) is activated, it remains active even
when you return to the AutoCAD editor session. Therefore, once VLISP is activated, all
Trace output is sent to the Trace window in the VLISP IDE and you must return to the
VLISP IDE session to continue viewing trace output until you close and reopen
AutoCAD to terminate the trace output to VLISP.

Another type of Trace is a Stack Trace.

The Trace button ™ is not on the DEBUG toolbar, but instead on the VIEW toolbar.

This is because the Trace feature is actually a window display as opposed to a debugging
command related to a specific piece of code (as is the Add Watch and Breakpoint
features).

To display the Trace Log window, you must first turn ON the command trace by picking
the Debug pulldown menu and checking the option titled “Trace Command”. Once this
is done, any calls to AutoCAD commands from your code execution in the VLISP IDE
are reported to the Trace Log window as shown below.

B trace M=l
AutoCAD command: ("“chprop™)

AutoCAD command: (<Entity name: 406728e8>)
AutoCAD command: ("*'")

AutoCAD command: ('"C™)

AutoCAD command: (“BYLAYER')

AutoCAD command: (') -

A M 4
Figure 4-4 — Trace Log window after CHPROP command called.

F
—
—

Figure 4-4 shows how a command such as CHPROP is reported to the Trace Log window
along with any arguments it uses such as entity name, command-line options and values
supplied to it. You may notice that each component is represented as a single-member
list. This is because VLISP represents command stacks in list form internally.

Inspection

Inspection involves drilling down into a symbol to see what properties it contains and
what form it is defined as. For example, inspecting the function (vla-get-activespace)
will show that it is defined as a SUBR, which is an intrinsic function provided by Visual

40

LISP. The number/letter string to the right of the declaration denotes its memory address
in the current namespace.

[___.]J:ilnspect: SUBR
|1¢<SL|BFE [@02:38daq0 vla-get-ActiveS pace:

|iname} vla-get-betiveSpace

Symbol Service

The Symbol Service utility provides a way to inspect symbols as to their properties. This
includes protection status, tracing, debug on entry status and whether it has been exported
to the AutoCAD namespace. From this pop-up form you can also perform online help

look-ups by picking the help button @ at the top of the form. The example below shows
the result of highlighting the code (vla-get-activespace) and picking the Symbol
Service button. You can also right-click on the highlighted code and pick Symbol
Service from the pop-up menu.

Qlsymbolservice |
6 X 2

M ame:

Ivla-get-.-’-‘-.u:tives pace

" ale:

H#<511BR @0233da50 via-get-ActiveSpaces

Flags:
[T Trace [V Protect &ssign
[T DebugonErtry [T Export bo AutoCAD
] Cancel |
.,
Apropos

The APROPOQOS feature allows you to search for functions, properties and methods based
upon a wildcard match, and return a list of them within a listbox in the IDE. From this
list you can copy/paste into your code window or perform online help lookups to learn
what the item can do or how it’s used. There are various ways to invoke this feature.
One of them is to right-click on some code and pick Apropos from the pop-up menu

(shown in the example below). Or you can pick the Apropos button ¢} on the View
toolbar.

41

{defun dsx-stuff {} u&;ﬂpropos results B

ula-get.] % NNE]
Cut
-
Copy vla-get-Actvel imStyle
Raste vla-get-tctivel ocument
wla-get-Activelayer
Find... vla-get-dctivelayot
Go to Last Edited wla-get-tctivelinetype
vla-get-ActiveProfile
Toggle Breakpoint wla-get-activeF'iewport
vla-get-AchveS electionSet
Inspect...

vla-get-ActiveSpace

Add Watch... wla-get-dictiveT extStyle
il

= wla-get-Activefiewport

Symbol Service... wla-get-ADClnsetnitsDefz
vla-get-ADClrsertnitsDefz
Undo wla-get-dlignment
Redo vla-get-AlignmentPointa ol
wla-get-allowlongSymbaltd.
wla-get-AltFantFile
vla-get-AltRoundDistance
wla-get-altSuppressl eading
vla-get-AltSuppressT railing:
vla-get-altSuppressZeroFes

wla-get-AltSuppressZerolne
iz ek AT 2hlathd ae File

As you can see by the example above, an APROPQOS search on “vl-get-“ turns up quite a
few matching items in the Results window. You can narrow down the search by typing
in a few more characters in your code window, such as “vla-get-Active” to only find
those items that begin with the same string value.

You can also modify the Apropos search within the Results window by picking on the
top-left button (tool tip says “Apropos Options”) and entering your changes to the search
criteria in the edit box. Other options on this form allow you to specify case-matching,
prefix only, and lowercase conversion. The Filter Value button displays even more
options on the Filter Value form.

LIL Apropos options | x| | UL Filter value |

— katch by walue wpe

wvla-get-dictive

I &~ Al [ro filter]
V' Match by prefis O Mull value
I~ Use WCMATCH " Nonull value
[T Lowercase spmbols " Function

™ User function

™ Exrssubr
Filter %/ alue | Filter Flagz |
2k, I Cancel
] | Cancel |

Figure 4-5 — Apropos Filter Value options

You can, for example, limit your search to items such as built-in functions, externally-
defined functions (ExrSubrs such as those defined by ObjectARX applications), and Null
or Non-Null values. The Filter Flags button displays a search filtering form for limiting

42

the search to symbols that have certain characteristics themselves, such as being
protected or those that have been exported to the AutoCAD namespace.

l'.___a].!;.I1|.|:|nr|:||.'u|:|5 options | u&;Filter Flags |

— katch by sumbol flags
Ivla-get-.-‘l'-.c:tive .
[Protect azsign
v Match by prefis [Trace
™ UsewCMATCH I~ Debug on entry
[T Lowerzase symbols [T Export to AutoCAD
Filter Walue | Filter Flags |
k. | Cancel |

Figure 4-6 — Apropos Filter Flags options
Bookmarks

Bookmarks are not necessarily a debugging tool, but they are useful for locating a
particular section of code quickly. This is especially true in cases where you are working
with very large amounts of code in a single file and it becomes difficult to jump around in
the file to specific points in the code. Bookmarks appear as a rounded square solid green
symbol in front of the line where you insert them.

To insert a Bookmark, place the cursor on the desired line of code and press ALT+. (a
period) or pick Search/Bookmarks/Toggle Bookmark. To remove a bookmark, place the
cursor on the bookmarked line and press ALT+. again or pick Search/Bookmarks/Toggle
Bookmark. To clear all bookmarks in a given file, pick Search/Bookmarks/Clear All
Bookmarks.

‘ While Visual LISP does not allow you to jump to bookmarks by name, you can
move between them in a Next/Previous manner. To jump from one bookmark to the
next, press CTRL+. (a period). To move to the previous bookmark, press CTRL+, (a

comma) or continue pressing CTRL+. Until you cycle through all the bookmarks again.
Goto Line Position
When Bookmarks are not practical, you can also jump directly to a line in your code by

number. Simply press CTRL+G to display the Goto Line box, enter the line number and
press Enter to go to that line.

43

[___],!;Eu to line |
| =]

Qk I Cancel |
]

Figure 4-7 — The Go To Line Box.

Error Trapping

Ultimately, no method of debugging will get you to the goal line without proper error
trapping. What is Error Trapping? It is simply a process of capturing an error in order to
diagnose the nature of the error and performing some corrective action as a result. This is
more efficient and produces better quality results than simply allowing the error to crash
your code and display an ugly, cryptic message that confuses the user.

ActiveX in particular, is not known for being very friendly when it comes to the content
of its error messages. For example, a common error message thrown by ActiveX
operations in Visual LISP is the following:

Error: ActiveX error: No description provided.

What does this mean to the user? For that matter, what does it mean to anyone? Not
much. However, within the context of your code, you might be trying to initiate a
connection to an Access database using ADO or JET. At the point where you would try
to make the connection, you should place an Error Trap around that code and test whether
it succeeded or failed, and if it failed, determine why it failed. Then you can check the
error conditions and display a meaningful message that may help the user figure out the
cause themselves, saving you even more work.

How do you place an Error Trap around your code? You use the functions provided by
Visual LISP for trapping, checking and handling errors generated by an ActiveX object.

Visual LISP Error Trapping Functions

Visual LISP provides some additional error trapping and error handling functions over
the age-old AutoLISP *error* function. Each of these functions give you a collective set
of tools to catch, verify and handle errors thrown from code execution in Visual LISP,
especially for code that runs in it’s own namespace or that is interfacing with external
application objects or procedures. For example, it can be very difficult at times to
intercept and react to errors generated from things like ADO failures unless you use these
special functions.

(vl-catch-all-apply “function list)

Places an error trap over the result of a function execution. Works similarly to the
Try-Catch exception handing provided in C++, C#NET and VB.NET

44

programming languages. This function returns either the successful object or an
Error object. The (vl-catch-all-error-p) function determines if the return
object is an Error object.

Arguments:

Function — Either a defun or lambda function definition or symbol pointer
List — A list of required arguments for the function being evaluated

The (vl-catch-all-apply) function is used to place an error “catch” (trap) around a set
of code expressions. Once executed, any result is passed directly to the output of this
function where it can be checked to see if it generated an error, and if so, what kind of
error was generated.

The syntax for this function is (vl-catch-all-apply function list) where function
is the expression being executed, and list is the items on which the function is being
executed upon or by way of.

1‘ Be aware of every ActiveX object you intend to use or interface with. You
should be careful to determine whether or not the object will “throw” an ActiveX or OLE
error when it fails. If it is capable of throwing such an error (as opposed to returning nil)

as the result of a failure, you should ALWAYS wrap the expressions used to interface
with it inside of an error handler to keep your code from “blowing up” on the user.

For example, to place an error trap around an attempt to open Microsoft Excel, you could
use something like this...

(cond
((vl-catch-all-error-p
(setq XL
(vl-catch-all-apply
"vlax-create-object
" ('Excel .Application™)
)
)
)
(vl-exit-with-error
(strcat "\nError: ' (vl-catch-all-error-message XL))

)

(T (princ “\nSuccessfully opened Microsoft Excel session object.”))

Figure 4-8 — Error trapping example using an Excel application object

This small example does the following (working from the inside out in order of
processing):

e Attempt to create an object of Excel.Application

45

e |f the attempt fails it returns appsession as an Error object.
e (vl-catch-all-error-p) returns T when it inspects appsession

e Evaluation is aborted by the (vl-exit-with-error) function which displays the
error message passed through the Error object appsession.

e This error causes the code to abort execution immediately and displays the
message to the user at the same time. Otherwise, if (vl-catch-all-error-p)
returns nil, the returned appsession object is not an Error object, and the program
can continue on to do more things with it.

A more simple and direct test is to force a “Divide by Zero” failure to create an error and
see how Visual LISP handles it. From within the LISP Console window, enter the
following two lines of code in the order shown. After the first line, you should see the
error object returned as <%catch-all-apply-error%>. After the second line, you
should see the string value message returned from the Error object as “divide by zero”.

_$ (setq catchit (vl-catch-all-apply */ "(50 0)))
#<%catch-all-apply-error%>

~$ (vl-catch-all-error-message catchit)

"divide by zero"

A good place to use (vl-catch-all-apply) is when attempting to fetch an object from
a collection using the (vla-item) method. For example, you might expect the following
code fragment to return nil if no matching object is found. However, this fragment would
throw an ActiveX error instead.

(setqg layers
(vla-get-layers
(vla-get-activedocument (vlax-get-acad-object))))
(setq mylayer (vla-item layers “Doors’))

The proper way to do this would be to use (vl-catch-all-apply) to trap the error
when a request fails. This might look something like the following:

Gf
(not
(vl-catch-all-error-p
(setq mylayer
(vl-catch-all-apply “vla-item (list layers “Doors’))
)
)
)

(princ “\nLayer was found in layers collection!”)
(princ “\nLayer does not exist.”)

)

46

1‘“’!
Here is an example function that I will use throughout this book in place of
(vla-item). It returns an object or nil if no item is found in the provided collection. |

highly recommend using a function like this in place of (vla-item) to avoid errors in
your code.

(defun get-item (collection item / result)
Qi
(not
(vl-catch-all-error-p
(setq result
(vl-catch-all-apply “vla-item (list collection item))

(vl-catch-all-error-p object)

Returns T or nil depending upon whether object is an Error object or not.
Arguments:

Object — Any vla-object

Example:
(vl-catch-all-error-p (vl-catch-all-apply “/ “(50 0)))
This will returns T (true) because (/ 50 0) is a classic “divide by zero” failure.

(vl-catch-all-error-message object)

Returns the message description from an Error object. If object is not an Error
object, this function returns nil.

Arguments:
Object — Any vla-object

Example:
(vl-catch-all-error-message (vl-catch-all-apply “/ “(50 0)))
This will display an error message “divide by zero”.

(vl-exit-with-error message)

47

Aborts the VLX execution and returns a string message result.

Arguments:

Message — A string containing an error message result

The (vl-exit-with-error) function aborts execution immediately and returns a string
value as the result. This is useful for passing up a custom error message that may provide
added clarity to users. This works very much like the AutoLISP (exit) function except
that you can pass a return value back as a result of the error. Figure 4-8 shows how you
can pass (vl-catch-al l-error-message) as the return message value.

(vl-exit-with-value value)
Aborts the VLX execution and returns a numeric or symbolic result value.

Arguments:

Value — Any value or symbol

Example:
(defun fubar (somevalue / *error¥*)
(defun *error* (s)
(vl-exit-with-value s)

(/ somevalue 0); force divide by zero error

)
(defun errortest (/ try)
(cond
((vl-catch-all-error-p
(setq try (vl-catch-all-apply "“fubar (list 12)))
)
(princ (strcat "\nError: " (vl-catch-all-error-message try)))
)
)
)

If you load the above example and type in (errortest), the result will be “Error: divide by
zero”. The (vl-exit-with-value) function works the same way as (vl-exit-with-
error) except that it returns a numeric value as the result. This can be helpful if you
want to handle errors using a numeric value parameter, such as passing up the return
value of an ActiveX Error number.

As you can see from these functions and the figures shown, you can perform very
detailed error trapping and handling using Visual LISP to help you produce better quality
code and software products. This practice is not unique to Visual LISP by any means. It
is the same in general as what is done with other languages such as C/C++, Visual Basic,
VBA, Java and so forth. However, the error trapping and handling features provided by

48

Visual LISP are by no means as flexible and robust as those provided by .NET and C++
(e.g. Try/Catch/Fail or Finally). Error trapping makes sense but you have to make the
effort to put it to efficient use to get the benefits it offers.

49

Chapter 5 — Working with Projects and Multiple Files

Projects are collections of related LSP files that you associate together for a common
purpose. Examples can be multiple files that comprise a single feature or group of
features that you want to always be working together in some respect. This is also called
a Work Space in other products, but the overall intent is the same: Collect related code
files together with a name to make it easier to open and work on them together.

Project Debug Tools Window Help

New Project...
' Open Project... Ctrl-Shift-P

Close Project

Project Properties...

Load Project FAS Fle
Load Project Source FHles

Build Project FAS
Rebuild Project FAS

Figure 5-1 — The Project pulldown menu

While Projects are great, VLISP has certain limitations that make them less than ideal
compared to other code development tools on the market such as Microsoft Visual
Studio. Among these limitations are that you cannot include DCL or other types of code
files, and you can only compile the project to FAS output, not to VLX. Ideally, a VLISP
project should allow for all file types that can be included in a VLX application (DVB,
txt, LSP, DCL).

Nonetheless, Projects are very useful for nothing less than to keep "" %
related LSP files together and be able to quickly open any or all of
them in the editor. See Figures 5-2 and 5-3 for an example of how gl
a project configuration is managed. -

. . . . autals Add File
Once you create and open a project, it will display a dockable [*%* gemave file

cpaly

listbox in the VLIDE window that displays all the member .LSP |=h, Load

files. To open a particular file, simply double-click on it. 2 Load source

ds-d Check syntax
dsrfle

You can also open multiple files at once by right-clicking on the |&#h Teuch

dsw-ol

list and picking Multiple Selection from the pop-up menu (refer to |£# arrange files »

dsx-pl

the image at right). B Multiple selection

das-p
digre [Un]Select all

editor

You can add and remove files from a project at any time by using s = Feseprolsct
the Add File or Remove File options from the pop-up menu. You bk
can also add or remove files from the Project Properties form (see Figure 5-2).

.0}
1P
The order in which you add files or sort them in the project files list is the order
they will be compiled in when using a project files list as the input for the Make

50

Application Wizard (discussed in Chapter 13). You can go back and modify the order of
files after they have been added into a given project.

Project properties ﬂ
Picisct Fies | Buid Options |
Home directory is C:/DS-50URCE fsource
~Lock in

dex-dimtonls -
_I dexlayers Top
dex-srdraw
dex-tent
B — anum il
dimtoolz2002 N | api-excel
LayerTools2002 autolay Down |
scalediaw2002 alitops
TextTools2002 < | cpoly
czh ml
DIRLIST
| | dsu-core LI
[Unjsakctal | Unjsekctal |

-|

QK I Cancel | Apply |
Figure 5-2 — The Project Properties form, Files tab

Figure 5-2 shows the main properties form for making and modifying a Visual LISP
project. Note that there are two tabs “Project Files” and “Build Options”. Figure 5-3
shows the “Build Options” tab panel. The Project Files panel is where you select the
.LSP files to be part of your project.

Project properties ﬂ E

Project Files Build Options |

Compilation Mode I~ | Localizs variables
{* Standard i Optimize .
¥ Safe optimize

i~ Merge files mode

' One module for each file
" Single module for all

r—Link maod Fas directary
Do ot Lk ’7 _I|
Lk Tmp directary
el “ _I
Messagemode
Edit Global Declaratiors.. |
¢ Fatal enmors

% Enors and warnings
" Full isports

Ok I Cancel | Apply |
Figure 5-3 — Project Properties / Build Options

The options shown in Figure 5-3 will be explained in more detail in Chapter 13 (“Making
Applications™). All of these options pertain to the making of FAS output files, .FAS files
are compiled LISP code that can be created from one or more LSP files as a single .FAS
file, which can be compiled into a VLX application file with other FAS files.

51

Chapter 6 — Working with Variants and Safearrays

While the topic of Variant and Safearray data types was discussed earlier in this book,
they are significant enough within the ActiveX world of Visual LISP to warrant an entire
chapter devoted solely to them. We will begin by briefly reviewing what they are and
then begin exploring how to work with them using Visual LISP functions.

As we mentioned before, a Variant is a data type that is designed to be a generic catch-all
container for any other type of data. They consume the most memory and processing
resources of all the data types because they are the largest in terms of resource
requirements.

Languages such as C/C++, Visual Basic and Delphi provide declaration statements to
notify the compiler in advance as to what data types each variable will contain. This not
only guarantees leaner resource requirements but also allows for error checking during
compilation that heads off runtime problems.

Visual LISP Variant Functions

(vlax-make-variant [value] [type])

Creates a variant object using the given value or symbol evaluation

Arguments:

Value — The value to be assigned to the variant. If value is omitted, an empty
variant of type vlax-vbEmpty is created.

Type — The data type of the variant. If type is omitted, the LISP data type is cast
to the closest ActiveX data type (see table below).

Examples:

(vlax-make-variant) or (vlax-make-variant nil)
Creates an uninitialized variant of type (vlax-vbEmpty).

(vlax-make-variant 10 :vlax-vblnteger)
Creates a variant of type Integer (vlax-vbInteger) with value of 10.

(vlax-make-variant “vlisp example’)
Creates a variant of type String (vlax-vbString) with value of “vlisp example”.

(setq dblarray (vlax-make-safearray vlax-vbDouble “(0 . 3)))
(vlax-make-variant dblarray :vlax-vbArray)

Creates a variant containing a safearray of double values.

52

1‘“’!

The Decimal and Short ActiveX data types are not supported in Visual LISP.
You can however, specify their types using the (vlax-variant-type) when reading in
values from external sources. To send data to external sources in these types, you may
have to use the numeric representation of (vlax-vbDecimal) and (vlax-vbShort) as they
are not provided as enumerations within Visual LISP. For example, a Decimal data type
is enumeration value 14.

Variant Data Types
What if you don’t specify the data type for the Variant constructor? Visual LISP will

attempt to convert it to an appropriate variant data type using a default mapping. Table
6-1 below shows the default mapping of data types from LISP to Variant.

LISP Data Type Variant Default Data Type Assignment
nil vlax-vbEmpty

:viax-null vliax-vbNull

INT (integer) vlax-vbLong

REAL (float) vlax-vbDouble

STR (string) vlax-vbString

VLA-OBJECT vlax-vbObject
:vlax-true or :vlax-false vlax-vbBoolean

VARIANT Same as the type of initial value
SafeArray vlax-vbArray

N/A vlax-vbShort

N/A vlax-vbDecimal

N/A vlax-vbDate

Table 6-1 — Visual LISP Default LISP->Variant Data Mappings

(vlax-variant-type variant)

Returns the data type of a variant. If the symbol is not a variant, an error is
generated. The return value is an enumeration of the data type (see Appendix A
for Data Type enumerations).

Arguments:

Symbol — A symbol containing a variant value.

Examples:

(setq vartest (vlax-make-variant 6 vlax-vblnteger))
(vlax-variant-type vartest) returns 2 (integer type)

(setq vartest (vlax-make-variant “dog” vlax-vbString))
(vlax-variant-type vartest) returns 8 (string type)

(setqg vartest 123)

(vlax-variant-type vartest) returns..

; *** ERROR: bad argument type: variantp 123

53

A variant type value greater than 8192 indicates that the variant contains some
form of safearray. To determine the data type of the safearray, subtract 8192 from
the return value. For example, if the return value is 8197, the safearray data type
IS 5 (8197 — 8192), which is a vlax-vbDouble data type.

(vlax-variant-value symbol)

Returns the value contained in a variant symbol. If symbol does not contain a
variant data type, and error is generated. Otherwise, the data type is returned as
an enumeration (integer) value (see Appendix A for Data Type enumerations).

Arguments:

Symbol — A symbol containing a variant value.

Examples:

(setq vartest (vlax-make-variant “testvalue” vlax-vbString))
(vlax-variant-value vartest)
Returns value “testvalue” as a string result.

(setq sa (vlax-make-safearray vlax-vbDouble “(0 . 2)))
(setq vartest (vlax-make-variant sa vlax-vbDouble))
(vlax-variant-value vartest)

Returns a value of #<safearray...> which is a vla-object type.

(vlax-safearray->list (vlax-variant-value vartest))
Returns value (0.0 0.0 0.0) a list result.

(vlax-variant-change-type symbol type)
Changes the data type assignment of a variant.
Arguments:

Symbol — A variant value

Type — Data type number or enumeration to convert to

Examples:

(setq vartest (vlax-make-variant 5 vlax-vblnteger))
(setqg vartest (vlax-variant-change-type vartest vlax-vbString))

Converts vartest to variant of type String (vlax-vbString) which would result in a
value being returned from (vlax-variant-value) as “5”.

Visual LISP SafeArray Functions

(vlax-make-safearray type diml [dim2] ..)

54

4

‘L

P’

Creates a safearray of data type type of dimension bounds dim1, etc. where
additional dimensions can be specified. If the operation fails for any reason,
expression returns nil.

Arguments:

Type — Data type (integer or enumeration)
Dim1 — Dimension of array (one dimension array)
Dim2 - (optional) Dimension of second array (two dimension array) etc.

Examples:

(setq sa (vlax-make-safearray vlax-vbDouble “(0 . 2)))

Creates a single-dimension array of doubles, capable of storing three distinct
elements (0, 1, 2).

(setqg sa (vlax-make-safearray vlax-vbString “(0 . 1) “(1 . 3)))

Creates a two-dimensional array of strings, the first dimension contains two
elements beginning at index 0. The second dimension contains three elements
and begins at index 1.

To populate a SafeArray you can either use (vlax-safearray-fill) or

(vlax-safearray-put-element) depending upon whether you need to assign elements
one at a time or all at once.

(vlax-safearray->list symbol)

If symbol contains a safearray, the elements are returned in a LISP LIST data
type. If symbol if does not contain a safearray, an error is generated. You should
wrap calls to this function inside of an error catch to ensure proper error handling.

Arguments:

Symbol — A symbol containing a safearray

(vlax-safearray-type symbol)

If symbol contains a safearray, the data type of the elements is returned as an
enumerated result (integer value). This can be matched either by the integer or
enumeration result (see Appendix A for Data Type enumerations). If symbol does
not contain a safearray, an error is generated.

Arguments:

55

Symbol — A symbol containing a safearray

Examples:

(setqg sa (vlax-make-safearray vlax-vbdouble “(0 . 3)))
(vlax-safearray-type sa)

Returns 5 (a double) which equates to vliax-vbDouble

(vlax-safearray-fTill safearray “element-values)

Assigns values to multiple elements in a safearray. If the supplied argument is
not an array, an ActiveX error is returned. You should wrap calls to this function
inside of an error catch to ensure proper error handling.

Arguments:
Safearray An object of type safearray.
Element-values A list of values to be stored in the array. You can specify as

many values as there are elements in the array. If you
specify fewer values than there are elements, the remaining
elements retain their current value or are left empty. For
multi-dimension arrays, element-values must be a list of
lists, with each list corresponding to a dimension of the
array.

Create a single-dimension array of double values:

_$ (setq myarray (vlax-make-safearray vlax-vbdouble "(0 . 2)))
#<safearray...>

Use vlax-safearray-fill to populate the array elements with values:

_$ (vlax-safearray-fill myarray "(1 2 3))
#<safearray...>

List the contents of the array to verify element values:

_$ (vlax-safearray->list myarray)
(1.0 2.0 3.0)

(vlax-safearray-get-element safearray element [element...])

Returns the value of specified elements within a safearray, where element values
are integers denoting the index locations to fetch within the array. If the safearray
argument is not a safearray object, an ActiveX error is returned. You should wrap
calls to this function inside of an error catch to ensure proper error handling.

Arguments:

56

Safearray An object of type Safearray

Element Integer of index location to fetch
_$ (setqg sa (vlax-make-safearray vlax-vbString (1 . 2) *(1 . 2)))

#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element sa 1 1 "A™)
:gn(vlax—safearray—put—element sal 2 "B
:g"(vlax—safearray—put—element sa 21"C")
:§"(vlax—safearray—put—element sa 22 "D

Use vlax-safearray-get-element to retrieve the second element in the first
dimension of the array:

~$ (vlax-safearray-get-element sa 1 1)
A
_$ (vlax-safearray-get-element a 2 2)
,1Dll

(vlax-safearray-put-element safearray element [element...]
value)

Assigns a new value to a single element in a safearray. If the safearray argument
is not a Safearray object, an ActiveX error is returned. If the element-value
supplied is not capable of casting into the expected array data type, an ActiveX
error is returned. You should wrap calls to this function inside of an error catch to
ensure proper error handling.

Arguments:

Safearray = An object of type Safearray

Element A set of index values pointing to the element you are assigning a
value to. For a single-dimension array, specify one index value; for
a two-dimension array, specify two index values, and so on.

Value A value to assign to each element. To assign different values to
individual elements in the array, make separate calls with unique
values to correspond to the appropriate element locations.

_$ (setqg sa (vlax-make-safearray vlax-vbString (1 . 2) *(1 . 2)))
#<safearray...>

57

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element sa 1 1 "A")
_é (vlax-safearray-put-element sa 1 2 "B")
_g (vlax-safearray-put-element sa 2 1 "C")
_g (vlax-safearray-put-element sa 2 2 "D")
npr

You can also populate array values using the vlax-safearray-fill function.
The following function call accomplishes the same task as three viax-
safearray-put-element calls:

(vlax-safearray-fill sa “(("A™ "B™) (C'C" "D')))

(vlax-safearray-get-dim safearray)

Returns the dimension (number of array dimensions) in a given safearray. If the
supplied argument is not an array, an ActiveX error is returned. You should wrap
calls to this function inside of an error catch to ensure proper error handling.

Arguments:
Safearray An object of type Safearray

_$ (setq myarray (vlax-make-safearray vlax-vbinteger "(2 . 5)))
#<safearray...>

~$ (vlax-safearray-get-dim myarray)
2

(vlax-safearray-get-1-bound safearray dim)

Returns the lower boundary of the specified array dimension (an integer value). If
the supplied argument is not an array, an ActiveX error is returned. You should
wrap calls to this function inside of an error catch to ensure proper error handling.

Arguments:
Safearray An object of type Safearray

Dim The integer location of the dimension within the array, where the
first dimension is 1.

The following examples evaluate a safearray defined as follows:

(vlax-make-safearray vlax-vbString “(1 . 2) "(0 . 1)))

58

Get the starting index value of the array's first dimension:

_$ (vlax-safearray-get-I1-bound tmatrix 1)
1

(vlax-safearray-get-u-bound safearray dim)

Returns the upper boundary of the specified array dimension (an integer value). If
the supplied argument is not an array, an ActiveX error is returned. You should
wrap calls to this function inside of an error catch to ensure proper error handling.

Arguments:
Safearray An object of type Safearray

Dim The integer location of the dimension within the array, where the
first dimension is 1.

(setq sa (vlax-make-safearray vlax-vbString "(1 . 2) *(0 . 1)))
_$ (vlax-safearray-get-u-bound sa 1)
2

The first dimension ends with index 2.

Get the end index value of the second dimension of the array, which starts at 1:

_$ (vlax-safearray-get-u-bound sa 2)
1

You might also want to define your own shorthand functions such as Lbound and
Ubound, which are commonly used in VB and VBA.

59

Chapter 7 —Object Manipulation Functions

Visual LISP provides a set of functions that allow you to create, manipulate and close
ActiveX objects. This is normally with respect to external application session objects,
but it can also apply to any external process object, such as DLL or OCX interfaces.

(vlax-get-object program-id)

Attempts to connect to an existing object (process). Same as the Visual
Basic/VBA/VBscript GetObject (program-id) function.

Arguments:

Program-ID — A string that names the application object class identifier. For
example “Word.Application” or “Excel.Application”.

Example:

(setq xlapp (vlax-get-object “Excel._Application.11))

Returns a vla-object to the external Excel application session if successful,
otherwise it returns nil.

(vlax-create-object program-id)

Attempts to create a new object session (process). Same as the Visual Basic
function CreateObject (program-id).

Arguments:

Program-ID — A string that names the application object class identifier. For
example “Word.Application” or “Excel.Application”.

Example:

(setqg xlapp (vlax-create-object “Excel.Application.11))

Returns a vla-object to the new external Excel application session if successful,
otherwise it returns nil.

(vlax-get-or-create-object program-id)
Attempts to first connect to an existing object session, and then, if none are found,
it attempts to create a new object session. This function has no equivalent in
Visual Basic; it is unique to Visual LISP.

Arguments:

60

Program-ID — A string that names the application object class identifier. For
example “Word.Application.11” or “Excel.Application.11”.

Example:

(setqg xlapp (vlax-get-or-create-object “Excel .Application.11"))

Returns a vla-object to the external Excel application session if successful,
otherwise it returns nil.

(vlax-write-enabled-p object)
Returns T if object can be modified, otherwise it returns nil.

Note: Be careful about this function. It may often return False when the object is
in fact open for modification.

Arguments:
Object — Any vla-object
(vlax-object-erased-p object)
Returns T if object was erased from the drawing, otherwise returns nil.

Arguments:
Object — Any vla-object representing an Entity object type.

(vlax-release-object object)

Releases object from memory, but does not deallocate memory. When releasing
an object that points to an external application session it is strongly suggested that
(gc) be forced to release the external process from operating system resources.

Arguments:
Object — Any vla-object.

[

While object symbols may be localized, completion of a function does
not necessarily release the objects’ resources. It is advised that you still use this
function to ensure the object is released properly when it is no longer needed.
However, be aware that even releasing an object derived from an external
application may not fully release it from memory or from the process stack of the
operating system. It is best to follow the completion of your code with releasing

61

of all unused objects, and then you should call the (gc) function in order to
“force” a garbage collection of the memory heap.

62

Chapter 8 —File and Directory Functions

Some of the most useful functions provided by Visual LISP are the file and directory
functions. These are a collection of functions that enable you to access, and modify file
properties as well as list files and folders within specified folders. One example of
putting these to use, is within the context of a dialog box listbox.

Maybe you’d like to show a list of drawing files in a listbox but not show their extensions
(possibly to keep the names shorter). This can be done by combining a directory listing
and the vl-filename-base function in unison as follows:

(mapcar “vl-filename-base (vI-directory-files pathname “*_.dwg’))

This will return a list of names such as (“drawingl” “drawing2” ...). Be careful with this
example in that it provides no error checking. If the (vl-directory-files) function returns
nil, the rest of the expression would crash with an error. This example is only shown to
demonstrate how these functions can be combined and used to facilitate file and directory
information usage.

(vi-file-size filename)

Returns the byte size of filename in integer form. If filename is not found, returns
nil.,

Arguments:

Filename String name of file to query.

Example:

(vi-file-size “c:\\myfilel.txt”); returns 125523 (roughly 124 Kb)
(vi-file-copy source-filename target-filename [append])

Copies file from source location source-filename to destination target-filename.
If append is non-nil and destination file exists, the source file is appended to the
existing destination file. If destination file exists and append is nil, the file will
not be copied and the return value is nil. If successful, an integer value is
returned.

Arguments:

Source-filename Name of file to be copied. If file is not in the default search
path, then the filename must include the full path location.

Target-filename Name of destination to copy source file to. If destination path
is not specified, the default working directory location is used.

63

Append (Optional) if non-nil, indicates source file is to be appended
onto destination file if destination file exists.

Examples:

(vi-Ffile-copy “c:\\myfilel_txt” “c:\\mycopy.txt’)

(vi-file-copy “c:\\myfile2.txt” “c:\\mycopy.txt” T); appends target file

(vi-file-delete filename)
Deletes filename. Returns T if successful, otherwise returns nil.
Arguments:
Filename String name of file to delete.

(vi-file-rename old-name new-name)

Renames existing file from old-name to new-name. Returns T if successful,
otherwise returns nil.

Arguments:

Old-Name String name of existing file.

New-Name String name to rename file when completed.
(vi-file-directory-p filename)

Returns T if filename represents a directory folder name. Returns nil if filename
is actually a file or does not exist at all.

(vl-Tile-systime filename)

Returns list of date and time values for last modification of filename. Return list
is in the form of (year month day-of-week day-of-month hours minutes seconds)

(vl-filename-base filename)
Returns the base filename without its path or extension.
Arguments:

Filename String naming the file, with or without the path or extension.

Examples:

(vil-filename-base “c:\\myfiles\\drawingl.dwg’)
Returns “drawingl”

64

(vi-filename-base “drawingl.dwg’)
Returns “drawingl”

(vi-filename-directory filename)
Returns the directory or path prefix value from the specified filename string.

Arguments:

Filename String naming the file including the pathname.

Examples:

(vil-filename-directory “c:\\dwgfiles\\working\\drawingl.dwg’)
Returns: “c:\\dwgfiles\\working”

(vi-filename-extension filename)

Returns the extension of a given filename string.

Arguments:
Filename Name of file (string)

Examples:

(vl-filename-extension “c:\\myfiles\\drawingl.dwg)
Returns “dwg”

(vi-filename-mktemp [pattern directory extension])

Creates a unique file name to be used for a temporary file. Returns a string file
name, in the format: directory\base<XXX><.extension> where base is up to 5
characters, taken from pattern, and XXX is a 3 character unique combination.

All file names generated by vi-filename-mktemp during a VLISP session are
deleted when you exit VLISP.

Arguments:

Pattern A string containing a file name pattern; if nil or absent, vI-filename-
mktemp uses "$VL~~",

Directory A string naming the directory for temporary files; if nil or absent, vl-
filename-mktemp chooses a directory in the following order:

o The directory specified in pattern, if any.
e The directory specified in the TMP environment variable.
e The directory specified in the TEMP environment variable.

65

e The current directory.

Extension A string naming the extension to be assigned to the file; if nil or
absent, vi-filename-mktemp uses the extension part of pattern (which
may be an empty string).

Examples:

(vI-filename-mktemp)

"C:\\TMP\\$VL~~004""

(vil-filename-mktemp "myapp.del')
""C:\\TMP\\MYAPPOO5.DEL""

(vI-filename-mktemp "c:\\acad2002\\myapp.del'™)
"'C:\\ACAD2002\\MYAPPOO6 . DEL"
(vi-filename-mktemp *c:\\acad2002\\myapp.-del™)
""C:\\ACAD2002\\MYAPPOO7 .DEL""
(vi-filename-mktemp "myapp" '"‘c:\\acad2002'")
""C:\\ACAD2002\\MYAPP0O0S8"

(vi-filename-mktemp "myapp" "c:\\acad2002" ".del')
""C:\\ACAD2002\\MYAPPOOA .DEL"

(vl-directory-Tiles path pattern [mode])

Returns a list of files or sub-folders depending upon mode.

Arguments:

Path String name of path to query.

Pattern String denoting files to query, may contain wildcards. If not
specified or nil, assumes “*.*”.

Mode (Optional) Integer. One of the following...
-1 = List directory names only
0= List files and directories (default if not specified)
1= Listfiles only.

Examples:

Command: (vl-directory-files “c:\\dwgfiles\\Working” “*.dwg’)

(“drawingl.dwg” “drawing2.dwg” . . .)

Command: (vl-directory-files “c:\\dwgfiles” nil -1)
(“-77 “- -11 ALFiniShed7’ “Working”)

Command: (vl-directory-files “c:\\dwgfiles” nil 1)
nil

66

Chapter 9 —Mapping and Iteration Functions

AutoLISP provides many powerful mapping and iteration functions such as (while)
(foreach) (mapcar) and (apply). Visual LISP adds a few more that are more suited
to working with ActiveX collection objects. These include (vlax-for), (vl-every)
and (vlax-map-collection) to hame a few.

(vlax-map-collection object function)

Applies function over collection object members (objects). If object is not a
collection, an error is generated.

Arguments:

Object A vla-object representing a collection
Function A symbol or lambda expression to be applied to object

Examples:

(setq docs (vla-get-documents (vlax-get-acad-object)))
(vlax-map-collection docs “vlax-dump-object)

This will repeat the full property listing for each document currently opened...

; TAcadDocument: An AutoCAD drawing
; Property values:
Active (RO) = -1
ActiveDimStyle = #<VLA-OBJECT lAcadDimStyle 046bb644>
ActivelLayer = #<VLA-OBJECT lAcadLayer 046bbd84>
ActivelLayout = #<VLA-OBJECT lAcadLayout 046b8a64>
ActiveLinetype = #<VLA-OBJECT IAcadLineType 046b89b4>
.. cont’d..

(vlax-for symbol collection [expressionl [expression2]]..)

Iterates member objects of collection and performs expressions on each member
object. If second argument is not a collection object, an error is generated.
Reference to symbol is localized and temporary, just as with (foreach).

Arguments:
Symbol A symbol to be assigned to each vla-object in a collection.
Collection A vla-object representing a collection

Expressions One or more expressions to be evaluated (optional)

Examples:

(setqg acadapp (vlax-get-acad-object))

67

(setqg layers (vla-get-layers (vla-get-activedocument acadapp)))
(vlax-for eachLayer layers

(princ (vla-get-name eachLayer))

(terpri)
)

This will list the names of all layers in the active drawing at the command prompt. Tip:
Avoid defining a symbol named “acad” since it can often generate a runtime error.

(vl-position i1tem list)

Returns the nth position of item within list if found. If item is not found in list,
returns nil. The position index of the first member is zero (0).

Arguments:
Item Any symbol or value.

List A list of values or symbols.

Example:

(Setq myl iSt 3 (llA’) llB’l “C"))
(vl-position “B” mylist) returns 1
(vl-position “b” mylist) returns nil.

(vl-every predicate-function list [list]...)

The vl-every function passes the first element of each supplied list as an argument
to the test function, followed by the next element from each list, and so on.
Evaluation stops as soon as one of the lists runs out.

Arguments:

Predicate-function The test function. This can be any function that accepts as
many arguments as there are lists provided with vi-every,
and returns T on any user-specified condition. Returns T, if
predicate-function returns a non-nil value for every element
combination, otherwise it returns nil.

The predicate-function value can take one of the following forms:

e A symbol (function name)
e (function (lambda (A1 A2) ...))

List(s) The list to be tested.

Examples:

Check for files larger than 1024 bytes in given folder:

68

(vl-every
(function
(lambda (filename)
(> (vil-file-size fTilename) 1024)
)

)
(vl-directory-files nil nil 1)

)
1

Comparing two lists...

(vl-every "= "(1 2) (1 3))
Returns nil

(vl-every "= "(1 2) "(1 2 3))
Returns T

The first expression returned nil because vl-every compared the second element in
each list and they were not numerically equal. The second expression returned T
because vl-every stopped comparing elements after it had processed all the
elements in the shorter list (1 2), at which point the lists were numerically equal.
If the end of a list is reached, vl-every returns a non-nil value.

_$ (setq listl (list 1 2 3 4))
(123 4)

_$ (setq list2 nil)

nil

_$ (vl-every "= list2 listl)

T

The return value is T because vi-every responds to the nil list as if it has reached
the end of the list (even though the predicate hasn't yet been applied to any
elements). And since the end of a list has been reached, vl-every returns a non-
nil value.

69

Chapter 10 -Working with Namespaces

Developing Visual LISP VLX applications can include the use of Separate Namespaces
in order to provide added performance controls and better security. However, there are
some added costs in terms of coding changes that must be used to avoid problems and
provide proper results. This includes importing and exporting functions and symbols, as
well as passing values in and out of the local namespace.

Because a separate namespace VLX application can be isolated, it can also be queried
and unloaded if desired, unlike normal LISP functions which are loaded into the
document namespace and are not identifiable or capable of being unloaded by name.
This very much like ObjectARX applications, and it provides added capabilities to the
developer that were not available to LISP until Visual LISP came along.

AutoCAD Application NameSpace

Document NameSpace

VLX NameSpace 1

VLX NameSpace 2

Joe Bob

Figure 10-1 — Namespace relationships

In the world of ActiveX or COM (Component Object Model) development, every
application is normally run in its own namespace within Windows. This is a common
part of how multitasking is enabled. Other processes that are started by a given
application may or may not run within the application’s namespace. They may in fact
run in their own isolated namespaces. The advantages are many, but there are tradeoffs
as well.

Referring to Figure 10-1 we can use some people examples to describe how namespaces
work and how processes within them behave. The two VLX applications running inside
of the Document namespace are each running in their own separate namespaces. This is
a little misleading, as they are not really running within the Document namespace, but are
actually running within the AcadApplication namespace. Because they were loaded into
the Document namespace however, they are referenced only within that Document
namespace. The third VLX is not a separate-namespace application and is running
entirely within the Document namespace as would any traditional AutoLISP application.

70

Namespace Scoping

Note in this example, that there are three objects (function definitions) named Bob.
While each is loaded into the same Document namespace, they cannot see or affect each
other. This results in something like having three distinct Bob objects, sort of like Bob
Smith, Bob Jones and Bob Doe. Unless you incorporate some specific Visual LISP
functions, they cannot communicate with each other or affect each other at all. So any
objects that refer to a Bob object in this Document will only get access to the one that is
in their same namespace.

The same is true for global symbols, if any are used. If we set a symbol G$BOB to a
value of “A” from the command line in the Document session, any G$BOB symbols
running within VLX1 or VLX2 will not be affected. From a function within VLX1, we
could assign G$BOB to a value of “B”. If a function within VLX1 displays (princ
G$BOB) it will return “B”, but from the command prompt a request for (princ G$BOB)
will still return “A”.

This type of protection results in what are commonly called private functions or private
symbols, since they are private to that VLX namespace. Functions and symbols defined
in the Document namespace however are not private since they are accessible by all other
applications running in that namespace. To put it more accurately, private and public are
relative to where the calling process is located (inside or outside of the respective
namespace). In other words, object Sue is public to any functions defined and running
within the VLX2 namespace, but Sue is considered private in the sense that VLX1 and
other namespaces cannot access it by default.

Namespace Functions

When you intend to compile your LSP code into separate namespace VLX modules you
need to make use of some special functions to get your code to communicate with other
VLX modules that run outside the namespace of your new VLX module. This is true of
whether the other VLX modules are within the document namespace or are compiled into
their own namespaces respectively. However, it bears noting that for each VLX that is
compiled into its own separate namespace, that you need to rely upon these functions in
every file, not just some, at least if you need them to communicate with each other or
with the document session namespace.

(vi-list-loaded-viIx)

Returns a list of all loaded separate-namespace VLX applications. If none are
loaded this returns nil.

(vl-unload-vIx appname)

Unloads a separate-namespace VLX application by name (appname is a string
value). This works like the (arxunload) function does with ObjectARX
applications.

71

Arguments:

AppName A symbol or string representing the string name of the VLX
application to be unloaded, for example “myapp.vIXx”.

(vi-vix-loaded-p appname)

Returns T if the specified separate-namespace VLX application is loaded in the
current drawing session. Otherwise, it returns nil.

(vl-doc-export “function)

Exposes a function from within a separate namespace VLX application for use by
applications or functions outside of its namespace. This must be declared at the
top of a given LSP file, above any function definitions, prior to compiling into a
separate namespace VLX application. Functions that are not exported from a
given VLX are private to that VLX and cannot be accessed from outside of its
namespace.

(vl-doc-import filename [“function])

Imports a function from another VLX application for use within the current
separate-namespace VLX application. If you don’t import such functions that are
exposed from other VLX applications, they are not accessible within a VLX
application acting as a consumer of that function. If filename is specified, but
‘function is omitted, all functions from the VLX module (filename) are imported.

Arguments:

Filename A symbol or string representing a VLX filename.
Function (Optional) A quoted symbol representing a function name.

If you want to limit the functions being imported, you must use the function
argument to name those functions, one at a time. The filename argument does not
use a file extension, only the base filename of the external VLX application file,
and that file must reside in the default search path, or the full path and filename
must be specified.

(vl-arx-import [“function | “appname”])

Imports a function or group of functions from a specified loaded ARX file. If
function and appname are omitted, all ARX-defined functions from the current
document namespace are imported. This function should be used within a (defun)
function definition. The ARX application must be loaded into the current
document session in order for this function to work.

Arguments:

72

Function (Optional) A quoted symbol representing a function name.

AppName (Optional, but must be included when Function is used) A symbol
or string that represents the ARX file to be imported from.

For example, if you wanted to use the DOSIlib ARX function (dos_getstring) for
use within your separate-namespace VLX application, you would have to import
it as follows:

(vl-arx-import “dos_getstring “doslib2k.arx’)

If you wanted to import all functions from doslib2k.arx, you would simply leave
off the function name as follows:

(vl-arx-import “doslib2k.arx’)

(vl-doc-set “symbol value)

Sets a symbol in the document namespace from within a separate-namespace
VLX application. If used outside of a separate-namespace VLX application, this
behaves like the (set) function. This function can be used to copy a symbol
defined within a separate-namespace VLX application to the document
namespace for public access. The symbol is copied by value, not by reference,
meaning that the symbol within the VLX application cannot be modified from the
document namespace. To import a document namespace symbol, you must use
the (vl-doc-ref) function from within your separate-namespace VLX application.

Arguments:

Symbol A quoted symbol name.

Value Any value to assign to the symbol.

Examples:

Defined example function, compile into separate-namespace VLX and load into
AutoCAD:

(defun DOCSET (O

(vl-doc-set “GSNAMELl “Joe’)
)

From the document namespace, via the command prompt:
Command: (DOCSET)
Command: 'GSNAME1L

“Joe”’

(vl-doc-ref “symbol)

73

Imports a symbol from the document namespace into a separate-namespace VLX
application namespace. The symbol is copied by value, not by reference,
meaning that the document namespace symbol cannot be directly modified from
within the VLX namespace. To export or set a document namespace symbol from
within the VLX namespace, you must use the (vI-doc-set) function.

Arguments:
Symbol A quoted symbol name.

(vi-load-all filename)

Loads a named VLX file into all opened documents at the same time. It also
loads into any documents opened thereafter within the same AutoCAD
application session.

Arguments:
Filename A symbol or string representing a valid filename.
(vl-propagate “symbol)

Copies a symbol and its associated value to all opened documents within the
AutoCAD application namespace, and to all documents opened afterwards during
the same AutoCAD session.

Arguments:
Symbol A quoted symbol name.
(vl-bb-set “symbol)

Posts a symbol and its associated value to the blackboard namespace. The
blackboard namespace is part of the AcadApplication namespace and is accessible
by all opened documents in the Documents collection. This provides similar
functionality to the Windows Clipboard, except that it is used for posting and
retrieving LISP symbols only.

Arguments:
Symbol A quoted symbol name.
(vl-bb-ref “symbol)
Retrieves a symbol and its associated value from the blackboard namespace.
Arguments:
Symbol A quoted symbol name.

74

(vi-list-exported-functions)

Returns a list of all functions that have been exposed to the document namespace
from any loaded VLX applications.

(vlax-add-cmd “globalname” “function [“localname” | flags])

Defines a command-line function from a (defun) that is not defined as a C:
function within a VLX application. You must specify at least the globalname and
function options. The localname and flags options are optional. You cannot use
(vlax-add-cmd) to expose functions as commands that create reactor objects or
serve as reactor callbacks. Returns the globalname value if successful, otherwise
returns nil if not successful.

It is suggested that (vlax-add-cmd) be used within a separate-namespace VLX
and that you load the VLX using the APPLOAD command instead of from within
a LISP startup routine.

Arguments:

GlobalName A string that specifies the command name for use at the command
prompt.

Function A quoted symbol representing a function name.

LocalName (Optional) Command name internal to the VLX application
namespace. If omitted, defaults to GlobalName.

Flags (Optional) Modify the behavior of the command with respect to
transparency, pickset and pickfirst options and so forth.

Primary Flag Options:

ACRX_CMD_MODAL (0) — Command cannot be invoked while another command is active.

ACRX_CMD_TRANSPARENT (1) — Command can be invoked while another command is
active.

Secondary Flag Options:

ACRX_CMD_USEPICKSET (2) — When the Pickfirst set is retrieved, it is cleared within
AutoCAD. Command will be able to retrieve the Pickfirst set. Command cannot retrieve or set
Grips.

ACRX_CMD_REDRAW (4) — When the Pickfirst set or grip set is retrieved, neither will be
cleared within AutoCAD. Command can retrieve the Pickfirst set and the Grip set.

75

If both ACRX_CMD_USEPICKSET and ACRX_CMD_REDRAW are set, the effect is the
same as if just ACRX_CMD_REDRAW is set. For more information on these flag
options, refer to the Command Stack topic in the ObjectARX Reference manual.

Examples:
Function defined in Transparent.\VVLX and loaded into AutoCAD:

(vIl-load-com)
(vl-doc-export “examplel)
(defun examplel O
(princ “\nThis is an example transparent function.”)

(princ)

(vlax-add-cmd “examplel” “examplel ““examplel” ACRX_CMD_TRANSPARENT)
(princ)

Command: LINE
Specify first point: “EXAMPLE1
This is an example transparent function.
Resuming LINE command.
Specify first point:
(vlax-remove-cmd “globalname’)

Removes a command definition that was previously defined using (vlax-add-
cmd). The function is not affected, but the command-prompt interface is removed
from the commands group.

Arguments:
GlobalName A string naming a command to be removed.

Examples:

(vlax-remove-cmd “examplel’)
=

(vlax-remove-cmd “example2’)
nil

(vl-acad-defun “function)

Enables a (defun) LISP function to be used as a c: function from an ObjectARX
application. This makes the function accessible to ObjectARX applications.

Arguments:

Function A quoted symbol representing a function name.

Examples:

(vl-acad-defun “examplel)

76

(vl-acad-undefun “function)

Undefines a command that was previously exposed using the (vl-acad-defun)
function. Returns T if successful, otherwise returns nil.

Arguments:

Function A quoted symbol representing a function name.

Examples:

(vl-acad-undefun “examplel”)
-

77

Chapter 11 —Registry Functions

Visual LISP provides special functions for accessing and modifying the Windows
registry. You can query and modify keys within the HKEY_LOCAL_MACHINE, and
HKEY_CURRENT_USER hives of the local registry using these functions. You cannot
obtain remote registry access using Visual LISP registry functions. Nor can you access
the HKEY_USERS, HKEY_CLASSES ROOT or HKEY_CURRENT_CONFIG registry
hives from Visual LISP.

Note that even in registry hives that Visual LISP can access, you are still bound by the
access controls imposed by the security context of the process owner. In other words, if
the Visual LISP application is being executed by a user that has limited permissions on
that machine, some registry keys may not be accessible or may not be modifiable by
Visual LISP. This issue is particularly important to consider in networked environments
where group policies are used to modify registry access permissions.

(vl-registry-read regkey [value-name])

Returns the value assigned to either an explicit registry key or a registry value-
name (symbol) if defined in the registry. If no such registry key or value-name is
found, the result is nil.

Arguments:

RegKey = Name of a registry key in HKEY_LOCAL_MACHINE or
HKEY_ CURRENT_USER hives.

Value-Name Name of a subordinate value symbol beneath the specified registry
key. (Optional)

Examples:
(vl-registry-write “HKEY_CURRENT_USER\\Examplel” “F00” *“123”")
“123”
(vl-registry-read "HKEY_ CURRENT_USER\\Examplel™ “F00’")
“123”
(vl-registry-read “HKEY_CURRENT_USER\\Examplel’)
nil
(vl-registry-write "HKEY_CURRENT_USER\\Example2"™ *** ""ABCDEF')
"'ABCDEF""
(vl-registry-read ""HKEY_ CURRENT_USER\\Example2')
"'ABCDEF"

(vl-registry-write regkey [value-name] value)

Writes value to registry key or registry key value-name and returns value if
successful. Returns nil if not successful.

Arguments:

78

RegKey Name of registry key

Value-Name Name of a subordinate value symbol beneath the specified
registry key. (Optional)

Value Value to write to the named registry key or value-name.

Examples:

(vl-registry-write “HKEY_CURRENT_USER\\Examplel” “TEST1” “123”)
b

(vl-registry-write “HKEY_CURRENT USER\\Examplel” “” “456")
Dy

(vl-registry-delete regkey [value-name])

Deletes a registry key and its associated values from the specified location in the
registry. Returns T if successful, nil if it fails. If value-name is supplied and is
not nil, the specified value will be purged from the registry. If value-name is
absent or nil, the function deletes the specified key and all of its values. If any
sub-keys exist, regkey cannot be deleted. To remove keys that have sub-keys,
you must use (vl-registry-descendents) to collect the sub-keys and delete
them first.

Arguments:
RegKey Name of registry key

Value-Name Name of a subordinate value-name (symbol) beneath the specified
registry key. (Optional)

Examples:

(vl-registry-write "HKEY_CURRENT_USER\\Examplel' "TEST1" "123")
123"

(vl-registry-delete "HKEY_CURRENT_USER\\Examplel')

=

(vl-registry-descendents regkey [value-names])

Returns a list of subkeys or value-names beneath the specified registry key. If
value-names is supplied and is not nil, the specified value names will be listed
from the registry. If value-name is absent or nil, the function displays all subkeys
of regkey. Note also that the return value is often in reverse sorted order.

Arguments:
RegKey Name of registry key

Value-Names A string containing the values for the regkey entry.

79

Examples:
(vl-registry-descendents "HKEY_LOCAL_MACHINE\\SOFTWARE')

('WexTech Systems™ *Voice"™ "'Synaptics’™ ''Symantec™ "'Secure’
"Program Groups™ "'Policies'™ "ODBC"™ "Nico Mak Computing"
“"MicroVision®™ "Microsoft” MetaStream™ "McNeel™ *McAfee'
"JavaSoft"” "Intel Corporation'™ "INTEL"™ "InstalledOptions”
"Helios"™ ""DOSLib"™ "Dell Computers'™ '"Dell Computer Corporation"
"Dell Computer™ "DameWare Development™ "Clients™ "Classes’™ ""BVRP
Software™ "BigFix" "Autodesk'™ ATl Technologies'™ "Apple Computer,
Inc." "America Online™ "Adobe™ "Adaptec' '"3Com'™)

You can see more examples of registry functions by opening the RegDump.LSP file
located in the Visual LISP Samples directory of your AutoCAD 2002 installation. In this
file, you will find a useful function named (registry-tree-dump) that performs a
recursive search of all subkeys and value-names beneath a specified registry key.

.fil"

values with some control over standardized locations and error trapping. You might find
the following two functions helpful:

You can create a pair of Get and Set functions to store and retrieve registry

(setq GSREGROOT ""HKEY_ CURRENT_USER\\Software\\MyApplication\\'")

(defun RegGet (key default / val)
(if (= nil (setq val (vl-registry-read (strcat G$REGROOT key))))
(progn

)
)

(regset key default)
(setqg val (vl-registry-read (strcat G$REGROOT key)))

(if val val default)

)

(defun RegSet (key val)

(vi-

)

registry-write (strcat GSREGROOT key) "' wval)

80

Chapter 12 — Reactors and Call-Backs

Note: Parts of this section were derived from the AutoCAD 2004 online Help
documentation with some modifications to provide additional examples or clarity.

|
i
wa While reactors are indeed extremely powerful and useful to developers, they
should be used with careful moderation. Depending upon the types and volume of
reactors you define in a given situation, you can easily and quickly deplete system
resources and cause AutoCAD to become unresponsive and even unstable or crash. Be
careful in choosing how you will apply reactors to your applications development.

Reactors are simply links between AutoCAD and your applications that allow you to
make functions that respond to events that occur within AutoCAD. For example, you can
create a reactor to notify your applications that an entity was erased. The application
could then perform some action in response to this event. A button on a form is a simple
example of event-driven programming that uses an Event and a Response to perform an
action. When you pick the button, it fires an event, much like a signal or broadcast. This
event is detected by a Reactor of sorts that performs some action as a result by using what
is known as a call-back process.

In AutoCAD terms, you might consider a scenario such as using the Commandwi I IStart
event to fire a Command Reactor call-back to perform some action based on what
command was executed. Maybe the user initiated the HATCH command, and you want
to react to that by firing a call-back function that sets a special layer active before the
Hatch is placed in the drawing, and then restore the previous layer state when the
command finishes. Maybe you’d like it to also restore the previous layer state if the
command fails due to an error? Or what if the user simply cancels the command in
midstream? This is possible using Reactors and Visual LISP programming.

What you need to do first is define the function that will be used in the call-back. Be
careful not to use (command) or (vl-cmdf) anywhere in that function if it will be called
upon as the result of a Command Reactor as this may start an endless cycle and crash
AutoCAD. Sounds like common sense, huh? Sometimes things like this are not so
obvious and can cause big problems. This is but one reason for developers to be VERY
careful when considering Reactors.

The next thing you need to do is define the Reactor and construct it to call your call-back
function if the proper condition is met by the event detected (the command is HATCH or
BHATCH, ignoring all others).

Figure 12-1 demonstrates how you might use a Command Reactor to respond to the
HATCH or BHATCH command by defining and setting layer “HATCHING” active until

81

the command has either finished (via the CommandEnded event), or aborted due to error
(via the commandFai led event), or user cancellation (via the CommandCancel led event).

Visual LISP Reactor Functions

(vl-load-com)

Loads AutoLISP reactor support functions and other AutoLISP extensions

(vlr-acdb-reactor data
callbacks)

Constructs a global “database” reactor object

(vlr-add obj)

Enables a disabled reactor object

(vlr-added-p obj)

Tests to determine whether a reactor object is enabled

(vIr-beep-reaction [args])

Produces a beep sound

(vIr-current-reaction-name)

Returns the name (symbol) of the current event, if called from within a
reactor's callback

(vlr-data obyj)

Returns application-specific data associated with a reactor

(vlr-data-set obj data)

Overwrites application-specific data associated with a reactor

(vlr-deepclone-reactor obj
data)

Constructs an editor reactor object that notifies of deep clone events

(vlr-docmanager-reactor
obj data)

Constructs a reactor object that notifies of MDI-related events

(vIr-dwg-reactor obj data)

Constructs an editor reactor object that notifies of a drawing event (for
example, opening or closing a drawing file)

(vIr-dxf-reactor obj data)

Constructs an editor reactor object that notifies of an event related to
reading or writing of a DXF file

(vlr-editor-reactor data
callbacks)

Constructs a global “editor” reactor object

(vIr-linker-reactor data
callbacks)

Constructs a global “linker” reactor object

(vlr-miscellaneous-reactor
data callbacks)

Constructs an editor reactor object that does not fall under any of the other
editor reactor types

(vlr-mouse-reactor
data callbacks)

Constructs an editor reactor object that notifies of a mouse event (for
example, a double-click)

(vIr-notification reactor)

Determines whether or not a reactor's callback function will execute if its
associated namespace is not active

(vlr-object-reactor owners
data callbacks)

Constructs an object reactor object

(vlr-owner-add reactor owner)

Adds an object to the list of owners of an object reactor

(vIr-owner-remove
reactor owner)

Removes an object from the list of owners of an object reactor

(vlr-owners reactor)

Returns the list of owners of an object reactor

82

(vlr-pers reactor)

Makes a reactor persistent between sessions (not transient)

(vlIr-pers-list [reactor])

Returns a list of persistent reactors in the current drawing

(vlr-pers-p reactor)

Determines whether or not a reactor is persistent

(vlr-pers-release reactor)

Makes a reactor transient (not persistent)

(vIr-reaction-name reactor-
type)

Returns a list of all callback conditions for this reactor type

(vlr-reaction-set reactor event
function)

Adds or replaces a callback function in a reactor

(vlr-reactions reactor)

Returns a list of pairs (event-name . callback_function) for the reactor

(vlr-reactors [reactor-type...])

Returns a list of reactors of the specified types

(vlr-remove reactor)

Disables a reactor object

(vIr-remove-all reactor-type)

Disables all reactors of the specified type

(vlr-set-notification reactor
“range)

Defines whether or not a reactor's callback function will execute if its
associated namespace is not active

(vlr-sysvar-reactor data
callbacks)

Constructs an editor reactor object that notifies of a change to a system
variable

(vIr-toolbar-reactor data
callbacks)

Constructs an editor reactor object that notifies of a change to the bitmaps
in a toolbar

(vlr-trace-reaction)

A pre-defined callback function that prints one or more callback arguments
in the Trace window

(vlr-type reactor)

Returns a symbol representing the reactor type

(vIr-types)

Returns a list of all reactor types (see next section)

(vlr-undo-reactor data
callbacks)

Constructs an editor reactor object that notifies of an undo event

(vlr-wblock-reactor data
callbacks)

Constructs an editor reactor object that notifies of an event related to
writing a block

(vIr-window-reactor data
callbacks)

Constructs an editor reactor object that notifies of an event related to
moving or sizing an AutoCAD window

(vlr-xref-reactor data
callbacks)

Constructs an editor reactor object that notifies of an event related to
attaching or modifying XREF

Reactor Types

There are many types of AutoCAD reactors. Each reactor type responds to one or more
AutoCAD events. The different types of reactors are grouped into one of the following

five categories:

Database Reactors

83

Database reactors notify your application when specific events occur to the drawing
database, such as when an object has been added to the drawing database.

Document Reactors

Document reactors notify your application of a change to the current drawing document,
such as opening a new drawing document, activating a different document window, and
changing a document's lock status. This does not include of all the events covered by
Editor reactors.

Editor Reactors

Editor reactors notify you each time an AutoCAD command is invoked; a drawing is
opened, closed, or is saved; a DXF file is imported or exported; or a system variable
setting is modified.

Linker Reactors

Linker reactors notify your application every time an ARX application is loaded or
unloaded.

Object Reactors
Obiject reactors notify you each time a specific object is changed, copied, or deleted.
With the exception of Editor reactors, there is one type of reactor for each reactor

category. The following table lists the name by which each reactor type is identified in
the Visual LISP environment:

General reactor types

Reactor type identifier Description

:VLR-AcDb-Reactor A Database reactor ‘

:VLR-DocManager-Reactor | A Document management reactor ‘

:VLR-Editor-Reactor A General Editor reactor-maintained for backward-compatibility ‘
:VLR-Linker-Reactor A Linker reactor ‘
‘VLR-Object-Reactor An Object reactor ‘

The Editor reactor class is broken down into more specific reactor types. The :VLR-
Editor-Reactor type is retained for backward-compatibility, but any new Editor
reactors introduced with AutoCAD 2000 cannot be referenced through :VLR-Editor-
Reactor. The following table lists the types of Editor Reactors available beginning with
AutoCAD 2000.

84

Editor reactor types

Reactor type

Description

:VLR-Command-Reactor

Notifies of a command event

:VLR-DeepClone-Reactor

Notifies of a deep clone event

:VLR-DWG-Reactor

Notifies of a drawing event (for example, opening or closing a drawing file)

:VLR-DXF-Reactor

Notifies of an event related to reading or writing of a DXF file

:VLR-Insert-Reactor

Notifies of an event related to block insertion

:VLR-Lisp-Reactor

Notifies of a LISP event

:VLR-Miscellaneous-Reactor

Does not fall under any of the other editor reactor types

:VLR-Mouse-Reactor

Notifies of a mouse event (for example, a double-click)

:VLR-SysVar-Reactor

Notifies of a change to a system variable

:VLR-Toolbar-Reactor

Notifies of a change to the bitmaps in a toolbar

:VLR-Undo-Reactor

Notifies of an UNDO event

:VLR-Whblock-Reactor

Notifies of an event related to writing a block

:VLR-Window-Reactor

Notifies of an event related to moving or sizing an AutoCAD window

:VLR-XREF-Reactor

Notifies of an event related to attaching or modifying XREFs

Note: Use the vir-types function to return the complete list of reactor types.

For each reactor type there are a number of events that can cause the reactor to notify
your application. These events are known as callback events, because they cause the
reactor to call a function you associate with the event. For example, when you issue the
SAVE or QSAVE commands to save a drawing, a :vIlr-beginSave event occurs. When
you complete the save process, a :vlr-saveComplete event occurs. In designing a
reactor-based application, it is up to you to determine the events you are interested in, and
to write the callback functions to be triggered when these events occur.

The vir-reaction-names function returns a list of all available events for a given

reactor type:

(vlr-reaction-names reactor type)

For example, the following command returns a list of all events related to Object

reactors:

$ (vlr-reaction-names :VLR-Object-Reactor)
(:VLR-cancelled :VLR-copied :VLR-erased :VLR-unerased :VLR-
goodbye :VLR-openedForModify :VLR-modified :VLR-subObjModified

85

:VLR-modifyUndone :VLR-modifiedXData :VLR-unappended :VLR-
reappended :VLR-objectClosed)

NOTE: If this or any other vlr-* command fails with a "no function definition"
message, you may have forgotten to call vI-load-com, the function that loads AutoLISP
reactor support functions.

To print out a list of all available reactor events, sorted by reactor type, load and execute
the following example function:

(defun print-reactors-and-events ()
(foreach rtype (vir-types)
(princ (strcat "\n" (vl-princ-to-string rtype)))
(foreach rname (vlr-reaction-names rtype)
(princ (strcat "\n\t" (vl-princ-to-string rname)))

)
(princ)
)

Verifying Reactor Types

The AutoLISP Reference lists each event available for a reactor type. For each reactor
type, you can find this information by looking up the description of the function you use
to define a reactor of that type. These functions have the same name as the reactor type,
minus the leading colon. For example, vir-acdb-reactor creates a database reactor,
vir-toolbar-reactor creates a toolbar reactor, and so on.

(vir-type reactor)
Iterates member objects of collection and performs expressions on each member
object. If second argument is not a collection object, an error is generated.
Reference to symbol is localized and temporary, just as with (foreach).
Arguments:
reactor A reactor object.

Return Values

A symbol identifying the reactor type. The following table lists the types that may
be returned by the vir-type function:

Reactor types

Reactor type Description

:VLR-AcDb-Reactor | A drawing database reactor.

86

:VLR-Command-
Reactor

An editor reactor notifying of a command event. This does not include C:
commands defined by LISP expressions, only native AutoCAD commands.

:VLR-DeepClone-
Reactor

An editor reactor notifying of a deep clone event.

:VLR-DocManager-
Reactor

A document management reactor.

:VLR-DWG-Reactor

An editor reactor notifying of a drawing event (for example, opening or closing a
drawing file).

:VLR-DXF-Reactor

An editor reactor notifying of an event related to reading or writing of a DXF file.

:VLR-Editor-Reactor

A general editor reactor; maintained for backward-compatibility.

:VLR-Insert-Reactor

An editor reactor notifying of an event related to block insertion.

:VLR-Linker-Reactor

A linker reactor.

:VLR-Lisp-Reactor

An editor reactor notifying of a LISP event.

:VLR-Miscellaneous-
Reactor

An editor reactor that does not fall under any of the other editor reactor types.

:VLR-Mouse-Reactor

An editor reactor notifying of a mouse event (for example, a double-click).

:VLR-Object-Reactor

An object reactor. (any object, e.g. vla-object type)

‘VLR-SysVar-Reactor

An editor reactor notifying of a change to a system variable.

:VLR-Toolbar-
Reactor

An editor reactor notifying of a change to the bitmaps in a toolbar.

:VLR-Undo-Reactor

An editor reactor notifying of an undo event.

VLR-Wblock- An editor reactor notifying of an event related to writing a block.

Reactor

:VLR-Window- An editor reactor notifying of an event related to moving or sizing an AutoCAD
Reactor window.

:VLR-XREF-Reactor

An editor reactor notifying of an event related to attaching or modifying XREFs.

Examples

~$ (vlr-type circleReactor)
:VLR-Object-Reactor

There are various ways to obtain information about reactors. Visual LISP supplies
AutoLISP functions to query reactors, and you can use standard Visual LISP data
inspection tools to view information on them.

To use AutoLISP to list all reactors in a drawing, call the vir-reactors function. The
function returns a list of reactor lists. Each reactor list begins with a symbol identifying
the reactor type, followed by pointers to each reactor of that type. For example:

87

_$ (vlIr-reactors)
((:VLR-Object-Reactor #<VLR-Object-Reactor>) (:VLR-Editor-Reactor

#<VLR-Editor-Reactor>))

In this example, vir-reactors returned a list containing two lists, one identifying a
single object reactor and one identifying a single Editor reactor.

To list all reactors of a given type, supply vir-reactors with an argument identifying
the reactor type. Specify one of the values returned by the vIr-types function; these are
listed in the section on Reactor Types. For example, the following lists all DWG reactors:

_$ (vlr-reactors :vlr-dwg-reactor)

((:VLR-DWG-Reactor #<VLR-DWG-Reactor> #<VLR-DWG-Reactor>))

In this case, the return value is a list containing one list. The one list identifies pointers to
two DWG reactors.

Using Object Reactors

Unlike other AutoCAD reactors, object reactors are attached to specific AutoCAD
entities (objects). When you define an object reactor, you must identify the entity the
reactor is to be attached to. The vilr-object-reactor function, which creates object
reactors, requires the following arguments:

e Alist of VLA-objects identifying the drawing objects that are to fire notifications
to the reactor. These objects are referred to as the reactor owners.

o AutoLISP data to be associated with the Reactor object.

e Alist of pairs naming the event and the callback function to be associated with
that event (event-name . callback_function).

|
‘maﬂﬁng

You cannot modify an object in a callback function if it is included in the object
reactor’s owner list. Attempts to do so will generate an error message and can crash
AutoCAD. This is a very esoteric concern with using reactors: To carefully plan your
implementation strategy so that you avoid the possibility of circular references where a
reactor callback affects one of the sources of the reactor itself.

For example, the following statement defines an object reactor with a single owner (the

object identified by myCircle), then attaches the string "Circle Reactor" to the reactor and
tells AutoCAD to invoke the print-radius function when a user modifies myCircle:

88

(setq circleReactor (vlr-object-reactor (list myCircle)

"Circle Reactor™ "((:vlr-modified . print-radius))))

The Reactor object is stored in variable circleReactor; you can refer to the reactor
using this variable. When defining a list of owners, you must specify VLA-objects only;
Ename objects are not allowed. VLA-objects are required because callback functions can
only use ActiveX methods to modify AutoCAD objects, and ActiveX methods require a
VLA-object to work on.

Note that, although you cannot use objects obtained through functions such as entlast and
entget with callback reactors, you can convert these Ename objects into VLA-objects
using the vlax-ename->vla-object function. See the AutoLISP Reference for more
information on vlax-ename->vla-object.

The following code example draws a circle and applies a reactor to the circle to notify of
any change made to the entity thereafter. Load the code, draw the circle and then go back
and either move or resize the circle using SCALE or grip editing to see how it works.

(vIl-load-com)
(setq oAcad (vlax-get-acad-object)

oboc (vla-get-activedocument oAcad)
)

(cond
((and
(setqg ctrPt (getpoint ‘“\nCenter point: “))
(setqg rad (distance ctrPt (getpoint ctrPt “\nRadius: “)))
)
(setqg CircleObject
(vla-addCircle
(vla-get-ModelSpace oDoc)
(vlax-3d-point ctrPt)
radius

)
)
)
)

(if CircleObject
(setqg circleReactor
(vir-object-reactor (list CircleObject) “Circle Reactor”
“((:vir-modified . rShowRadius))

)
)
)

(defun rShowRadius
(notifier-object reactor parameter-list)
(cond
((vlax-property-available-p notifier-object ""Radius')
(princ "*** The radius is ')
(princ (vla-get-radius notifier-object))

89

Attaching Data to Reactor Objects

The object reactor creation example in Using Object Reactors included a string, "Circle
Reactor," in the call to vir-object-reactor. You do not have to specify any data to be
included with the reactor; you can specify nil instead. However, an object may have
several reactors attached to it. Include an identifying text string, or other data your
application can use, to allow you to distinguish among the different reactors attached to
an object.

Inspecting Reactors Within the VLIDE

You can examine reactors using the VLIDE Inspect tool. For example, the object reactor
defined in Using Object Reactors was returned to the variable circleReactor. If you open
an Inspect window for this variable, VLISP displays the following information:

@,E Inzpect: ¥LR-0Object-Reactor El
| #<VLR-0biect-Feactors

O wnerst [Bew Lo OBE LT ecadiircle U1 s
{Reactons} [[VLR-modified . PRINT-RADIIS]
{added-p} T

[Data] "Circle Reactor

{Rangel 0

{Document} #<VLA-OBJECT lacadDocurnent

The following information is revealed in the Inspect list:
Objects owning the reactor

o Event and associated callback function
Whether or not the reactor is active:
o Yesifadded-pisT
o No if added-p is nil
User data attached to the reactor
Document range in which the reactor will fire:
o 0 - Reactor responds only in the context of the drawing document it was
created in.
o 1 - Reactor responds in the context of any document
o See the section “Reactors and Multiple Namespaces”
The AutoCAD document attached to the object reactor

Double-click on the item that begins with {Owners} to view a list of the owner objects:

90

@;ﬂlnspect: LIST x|
|[#<LA-OBJECT lacadCircle 012583045

FIOT B VLA OBJECT [AcadCicle 01 ebnouds

You can drill down to find the owner by double-clicking on a list item in the Inspect list
box.

Querying Reactors

VLISP also provides functions to inspect a reactor definition from within an application
program, or at the Console prompt:

e vir-type returns the type of the specified reactor. For example:

$ (vir-type circleReactor)
:VLR-Object-Reactor

e vilr-current-reaction-name returns the name of the event that caused the
callback function to be called.

e vlr-data returns the application-specific data value attached to the reactor, as
shown in the following example:

$ (vlr-data circleReactor)
"Circle Reactor™

You can use this data to distinguish among multiple reactors that can fire the same
callback function.

e vlr-owners returns a list of the objects in an AutoCAD drawing that fire
notifications to an object reactor. The following function call lists the objects that
fire notifications to circleReactor:

_$ (vir-owners circleReactor)
(#<VLA-OBJECT IlAcadCircle 03ad077c>)

e vir-reactions returns the callback list of condition-function pairs of the
specified reactor. The following example returns information about circleReactor:

$ (vir-reactions circleReactor)
(C:vlr-modified . PRINT-RADIUS))

Transient and Persistent Reactors

Reactors may be transient or persistent. Transient reactors are lost when a drawing closes;
this is the default reactor mode. Persistent reactors are saved with the drawing and exist
when the drawing is next opened. If you use persistent reactors that invoke custom

91

applications via a callback, the custom applications must be loaded for the callback to
work properly. See the next section for more on peristent reactors.

Use the vir-pers function to make a reactor persistent. To remove persistence from a
reactor and make it transient, use vir-pers-release. Each function takes a Reactor
object as its only argument. For example, the following command makes a reactor
persistent:

_$ (vir-pers circleReactor)
#<VLR-Object-Reactor>

If successful, vir-pers returns the specified Reactor object.

To determine whether a Reactor object is persistent or transient, issue vir-pers-p. For
example:

_$ (vir-pers-p circleReactor)
#<VLR-Object-Reactor>

The vir-pers-p function returns the Reactor object if it is persistent, ni I if it is not.

Opening Drawings with Persistent Reactors

Since a reactor is only a link between an event and a callback function. While this link
remains, the callback function itself is not part of the reactor, and is normally not part of
the drawing. The reactors saved in the drawing are only usable if their associated callback
functions are loaded in AutoCAD. You can cause this to occur automatically when a
drawing is opened if you define the reactor and callback functions in a separate-
namespace VLX.

If you open a drawing containing VLISP reactor information and the associated callback
functions are not loaded, AutoCAD displays an error message. You can use the vir-
pers-list function to return a list of all Persistent reactors in a drawing document.

Reactors and Multiple Namespaces

The current implementation of AutoLISP supports working in one drawing document at a
time. Some AutoCAD APIs, such as ObjectARX and VBA, do support the ability of an
application to work simultaneously in multiple documents. As a result, an application
may modify an open drawing that is not currently active. This is not supported in
AutoLISP.

92

Guidelines for Using Reactors

As | mentioned at the start of this chapter, Reactors demand careful attention to planning
and consderation for performance and stability. The following guidelines are provided in
the AutoCAD online Help documentation and are very good points to consider.

When using reactors, try to adhere to the following guidelines. Reactors that violate these
guidelines can result in unpredictable results for your application if the internal
implementation of reactors changes.

e Do not rely on the sequence of reactor notifications.

It is recommended that, with a few exceptions, you do not rely on the sequence of reactor
notifications. For example, an OPEN command triggers BeginCommand, BeginOpen,
EndOpen, and EndCommand events. However, they may not occur in that order. The
only event sequence you can safely rely on is that a Begin event will occur before the
corresponding End event. For example, commandwillStart() always occurs before
commandEnded(), and beginlnsert() always occurs before endinsert(). Relying on
more complex sequences may result in problems for your application if the sequence is
changed as a result of new notifications being introduced in the future and existing ones
being rearranged.

« Do not rely on the sequence of function calls between notifications.

It is not guaranteed that certain functions will be called between certain notifications. For
example, when you receive :vir-erased notification on object A, all it means is that
object A is erased. If you receive :vlr-erased notification on A followed by a -vir-
erased notification on B, all it means is that both objects A and B are erased,; it does not
ensure that B was erased after A. If you tie your application to this level of detail, there is
a very high probability of your application breaking in future releases. Instead of relying
on sequences, rely on reactors to indicate the state of the system.

« Do not use any interactive functions in your reactor callback function (for
example, do not use getPoint, entsel).

Attempting to execute interactive functions from within a reactor callback function can
cause serious problems, as AutoCAD may still be processing a command at the time the
event is triggered. Therefore, avoid the use of input-acquisition methods such as
getPoint, entsel, and getkword, as well as selection set operations and the command
function.

e Do not launch a dialog box from within an event handler.
Dialog boxes are considered interactive functions and can interfere with the current
operation of AutoCAD. However, message boxes and alert boxes are not considered

interactive and can be issued safely.

93

« Do not update the object that issued the event notification.

The event causing an object to trigger a callback function may still be in progress and the
object still in use by AutoCAD when the callback function is invoked. Therefore, do not
attempt to update an object from a callback function for the same object. You can,
however, safely read information from the object triggering an event. For example,
suppose you have a floor filled with tiles and you attach a reactor to the border of the
floor. If you change the size of the floor, the reactor callback function will automatically
add or subtract tiles to fill the new area. The function will be able to read the new area of
the border, but it cannot attempt any changes on the border itself.

e Do not perform any action from a callback function that will trigger the same
event.

If you perform an action in your reactor callback function that triggers the same event,
you will create an infinite loop. For example, if you attempt to open a drawing from
within a BeginOpen event, AutoCAD will simply continue to open more drawings until
the maximum number of open drawings is reached.

« Verify that a reactor is not already set before setting it, or you may end up with
multiple callbacks on the same event.

e Remember that no events will be fired while AutoCAD is displaying a modal
dialog.

[
A VLX may run in a separate-namespace from the document it is loaded from,
but it is still associated with that originating document and cannot manipulate objects in
other documents.

Visual LISP provides limited support for reactor callback functions executing in a
document that is not active. By default, a reactor callback function will execute only if a
notification event occurs when the document it was defined in is the active document.
You can alter this behavior using the vir-set-notification function.

To specify that a reactor should execute its callback function even if the document it was
defined in is not active (for example, if an application in another namespace triggers an
event), issue the following function call:

(vir-set-notification reactor-object "all-documents)
This can be useful to notify all instances of your application (that is, if not a separate

namespace VLX application propagated to all sessions) that an event occurred in one of
the sessions.

94

To modify a reactor so it only executes its callback function if an event occurs when the
document it was defined in is active, issue the following:

(vir-set-notification reactor-object "active-document-only)

The vir-set-notification function returns the specified reactor object. For example,
the following sequence of commands defines a reactor and sets it to respond to events
whether or not its associated document is active:

_$ (setq circleReactor (vlr-object-reactor (list myCircle)
"Circle Reactor”™ "((:vlr-modified . print-radius))))
#<VLR-Object-Reactor>

_$ (vlr-set-notification circleReactor "all-documents)
#<VLR-Object-Reactor>

To determine the notification setting of a reactor, use the vir-notification function.
For example:

_$ (vlr-notification circleReactor)
all-documents

The vir-set-notification function affects only the specified reactor. All reactors are
created with the default notification set to active-document-only.

[]

If you choose to set a reactor to execute its callback function even if triggered
when its document is not active, the callback function should do nothing other than set
and read AutoLISP system variables. Performing other types of actions may cause
AutoCAD to become unstable or crash!

Note that VBA provides no equivalent to vir-CommandCancel led, which means that

only through Vlisp can you handle a user pressing ESC during a command being
managed by a command reactor.

95

Chapter 13 — Making Visual LISP Applications

Probably the most significant feature provided by Visual LISP is the capability to build
and manage applications. In this context, we are really talking about VLX applications,
but you could consider FAS output to be applications as well. The building of Visual
LISP applications is closely tied to the use of Projects, but they are not inseparable.

Why Make VLX Applications?

The main reasons for making VLX applications are improved security and performance.
Security is improved because the Visual LISP compiler encrypts and compiles the source
LSP code into binary output that is unreadable to the human eye. It also can combine
multiple LSP files into a single VLX output further improving security and providing a
single output for delivery to users. Performance is improved because the compiled code
is actually more efficient to execute at runtime.

Unlike many other programming languages, Visual LISP does not truly “compile” its
output, but more accurately performs an encryption and partial compilation. This is
somewhat like what a Java compiler does to produce “p-code” output, which is then
compiled at runtime by the JVM (Java Virtual Machine) compiler on the client. Visual
LISP VLX code is compiled to binary output but not to machine level language, meaning
it must be interpreted at runtime by the client. It still provides some measure of
performance improvement over raw LSP source code though.

FAS files are an intermediate output during the VLX compilation that is the product of
the LSP file compilation. The VLX module combines FAS files and any other file types
to wrap it all up as a single loadable module on the client. VLX applications can include
other file types such as LISP, Dialog Control Language files (.DCL), Compiled LISP
code (.FAS), VBA compiled files (.DVB), ASCII TEXT (.TXT) and even other VLISP
Projects (.PRV).

One of the most useful features of making VLX applications is that you can combine
multiple files into the single VLX output. This makes for easy loading and management
as well as keeping your deliverable product clean and compact. Let’s try an example.

Building a Simple Application

Open the FirstApplication.LSP file in Visual LISP from the book samples CD. Then
open the FirstApplication.DCL file in Visual LISP as well. Now, pick File/Make
Application/New Application Wizard from the pulldown menu. There are two modes for
compiling VLX applications: Simple and Expert. Simple used when you are only going
to compile LSP files and do not intend to compile a separate namespace VLX. Expert
mode allows you to include additional Resource files such as DCL, DVB, VLX and
others within the VLX as well as make it a separate namespace application.

96

Since in this exercise we will be compiling a LSP file with a DCL file into a single,
separate namespace VLX application, you have to select the Expert mode from the
Wizard Mode panel (Figure 13-1). Pick the Next button.

Ul wizard Mode |

— Chooze Wizard kMode

Y'ou may zelelct the simple or expert ™ Simple
wizard application mode. The zsimple ~

mode prompts pou salely for the LISP @ Expet
source files to include. and the
application name to create. The
expert mode should be zelected if you
need to include additional rezource
files [such az .del ar .dvb files] or if
you hieed bo modify the default
compilation options.

[]
< Back I MHext = I Cancel |

Figure 13-1 — Make Application Wizard

The Application Directory panel (Figure 13-2) is where you specify the VLX filename
and target output location. The Application Location is where you want the VLX file to
be created at the end of the process. The Application Name is the name you want to call
the VLX file (don’t include the extension, only the base filename). You will see that
while you type in the Application Name box, the Target File window shows the actual
VLX filename result. Once you’ve specified the Application Location, and entered the
Application Name “FirstApplication”, pick the Next button to continue on.

Ul Application Directory |
— Chooze Application Location —&pplication Location
Celect the location and name for pour IE:#'

application. |n addition ko the compiled
application which is given a vl file Browsze. |
extension, an application make file

[.prv] is created, containing wor

selections fram the wizard, Thiz iz uzed —Application Marmne
for zubsequent rebuilds of the Firsths
applicatiar, I IrEtapp
— T arget File
Firsttpp. L

¢ Back I MHest > I Cancel

Figure 13-2 — Specifying the output location and VLX filename

97

The Application Options panel (Figure 13-3) prompts you to make this a Separate
Namespace application, as well as use ActiveX Support. For this example, check both
options, and pick Next to continue.

Ul Application Dptions

— Select Application Options

At thiz step, select if your application W' ActiveX Suppart
will ran within the default namespace
[i.e.. your application function names
and global wariable names are part of
the primary LISP ervironment within
each drawing.] Choozing a separate
namezpace means that only selected
functionz from wour application wil be
made publicly available from the
primary LISF ervironment.

¥ Separate Namespace

< Back | Mest » I Cancel |

Figure 13-3 — Application Options form (Separate Namespace checked)

The LISP Files to Include panel (Figure 13-4) is where you select the LISP code files
(*.LSP) to include in your VLX application. Pick the Add button to browse for, and
select the FirstApplication.LSP file. Then pick the Next button to continue.

L LISP Files to Include |

— Select Files to Inchude

.../Firstipplication. |zp
Select the LISP files to include in e

wour application. v'ou can select

AutalISP source files [lzp], Up |
compiled LISF files [faz], ar Yisual

LISF project files [prj], or ary

combination. Ml

B Dttu:uml

ILisp source files j

Bemove |

< Back | Ment » | Cancel |

Figure 13-4 — LISP Files to Include form

The Resource Files to Include panel (Figure 13-5) is where you select additional resource
files, such as DCL dialog form files, DVB (VBA) files, and other types of files. Change
the file type selection to DCL Files and pick the Add button to locate and select the
FirstApplication.DCL file. Then pick the Next button to continue on.

98

|'.___.]$Resnurce Files to Include |

— Select Additional Rezource Files ‘DCL C:4.. fFirstépplication. dcl

Select additional rezource files, such az
Yizual B azic for &pplication files [dvb) or
Dialog Control Language files [.del).
These filez are auxiliany files for your
application and may be lnaded from waur
progran.

|DCL files =l

Hemowve. .. |

I
< Back | Ment » | Cancel |

Figure 13-5 — Resource Files Include form

The next panel prompts you to choose either Standard or Optimized compilation. For
this example, use the Standard option and pick the Next button to continue.

l'-___.]é;.I!I.pnplil:atiu:m Compilation Options |
— Select Application Compilation Optionz —
R o : : {* Standard
Chooze the compilation mode for your Dotimize and Link
application. Standard mode iz sufficient R

for most applicationz. The optimize
mode can reduce pour executable file
zize by eliminating internal function and
waniable symbalz. The link mode can
optimize vour program's speed by
zubstituting references to funchions'
names with a direct references to the
function's compiled body.

< Back | Cancel |

Figure 13-6 — Application Compilation Options form

The final form asks if you want to save the Make Application settings and go ahead and
compile the VLX application. If you choose not to compile, the settings you just
configured are saved to a make file that uses a .PRV file extension. You can reuse make
files at any time to recompile using the stored settings and save a lot of time. For this
example, go ahead and compile your VLX application by picking the Finish button.

99

ué:iﬂeview Selections / Build Application

—Review Selection: and Build

Al thiz final step, pou can review W' Build Applicatian
your gelections and complete the
process by building the application.
Wigual LISP will save pour zettings
it an application make file [pr).
You can subzequently rebuild or
riadify the application uzing the
application mak.e file.

¢ Back | Finizh I Cancel

Figure 13-7 — Review selections and build application form.

Now that you’ve compiled FirstApp.VLX you can load it into AutoCAD and try the
FIRSTAPP command to see how it works. You should see a dialog form with one OK

button and a message displayed saying “Congratulations!” in the middle.

If this doesn’t happen, review this chapter to make sure you followed all steps correctly
and compile and load it again. To reload a separate namespace VLX you first have to

unload the existing definition by using the (vi-unload-vix) function.

To unload

FIRSTAPP, you would use (vl-unload-vix “firstapp.vix”) at the command

prompt.

a AutoCAD 2002 - [C:Documents and Settings'steind',My Documents',My Drawings'StephenHarris-751... =]
File Edit Y¥Yiew ShipWworks Piping Insert Format Tools Draw Dimension Modify
Express Window Help =1 |

[Dzdeha bR~ |[FORG@R| L, 0 ectta
H%%IQ&%"DD jg”D ByLayer j” Ewlayer j” BylLayer j
om0 T8O H /gt dFemFasr ||
— B

Lﬂh My First ¥isual LISP Application

Congratulations!

D& 0 2OTO0 L %N
o N v g P =

-
Command : il
Command: FIRSTAFF x
N Bl
[93.8717. 27457 . 0.0000 | SHAF] GRID| ORTHO|[POLAR [OSMAR [OTRACK [L'wT [MODEL

100

Figure 13-8 — Results of running the FIRSTAPP command.

PRV Files

The Make Application Wizard creates a PRV file to store the settings for your
application. If you open a PRV file in notepad, you will see that it is actually a LISP
formatted file in which the properties are stored as dotted-pair lists. The example below
shows a PRV that compiles a LSP and a DCL file into the ASW_PM.VLX output.

;55 Visual LISP make file [V1.0] asw_pm saved to:[C:/ASW/SYS]
at:[3/15/02]
(PRV-DEF (:target . "asw_pm.VLX"™)
(zactive-x . T)
(:separate-namespace)
(:protected . T)
(:load-file-list (:Isp "source/asw_pm.Isp'))
(:require-file-list (:DCL "source/asw_pm.DCL™))
(:ob-directory)
(-tmp-directory)
(:optimization . st)
)
;; EOF

|
o
m Although you might be tempted to “tweak” PRV files in a text editor, you
should instead use the “Existing Application Properties” feature to modify the PRV
configuration settings. Editing the PRV file manually may corrupt the file and cause
errors when you attempt to recompile.

File Edit Search ¥iew Project Debug Tools Window Help

New File Ctrl-N * JJ = | B ag () FE

Open File... Ctrl-0 —
Reopen F JJ%%@?EH%|EE|@
Save Cinl-5

Save As... Ctrl-Alt-5

Save All Alt-Shift-5

Close Ctrl-F4

Revert

Close All

Print... Ctrl-P

Print Setup...

New Application Wizard...
Exzisting Application Properties...
rake Application...

Exit Alt-0 Rebuild Application...

lake Application

Load File... Ctrl-Shift-L

101

Chapter 14 — Using ObjectDBX with Visual LISP

Visual LISP can interface with any ActiveX-enabled resources available to the user.
ObjectDBX is yet another resource provided within AutoCAD that can be tapped by
Visual LISP to perform special tasks that are not possible with any other technologies.
First, we need to start off by explaining what ObjectDBX really is.

What is ObjectDBX?

ObjectDBX is a subset of ObjectARX, well, sort of. It’s a C++ object-oriented API for
manipulating AutoCAD and its related objects, collections, properties, methods and
events. While ObjectDBX is capable of many powerful feats of daring, it does have
some limitations compared to ObjectARX and Visual LISP. Aside from the limitation, it
also provides some nice advantages over them as well. Confused? | know | was at first.
But, one place where ObjectDBX really shines is in the world of remote document
access, in particular, mining drawings other than those that are open.

Recently, Autodesk released the ObjectDBX SDK for developers to use for mining and
manipulating drawing data without having AutoCAD installed. Free? Of course not. In
fact, there’s a steep price tag and licensing royalty to contend with if you want to pursue
this baby. You could opt for OpenDWG alternatives, but since ObjectDBX is built by
Autodesk, you can be fairly certain it’s going to be reliable when it comes to recognizing
all the subtle things in a DWG file.

For the sake of this chapter however, I am going to focus on ObjectDBX as an integral
service within AutoCAD, and how it can be used from Visual LISP to perform certain
tasks that VLISP alone cannot do. Sound interesting? Let’s see how this works.

How to Use ObjectDBX within Visual LISP

In order to use ObjectDBX within Visual LISP, you must first load the ObjectDBX
TypeLib interface as shown in Figure 14-1. Then you must invoke the interface using a
special function (vla-getinterfaceObject) as shown in Figure 14-2. Figure 14-1
shows a few example functions for loading the ObjectDBX TypeLib interface within
Visual LISP.

Let’s suppose for example, that you would like to be able to search a directory of drawing
files to find those that contain a specific block insertion. While you could open each
drawing and fetch the Blocks table or do a (ssget) search, there is another way to do
this without ever opening the drawings in the AutoCAD editor: ObjectDBX.

;; Calls REGSVR32 to register a DLL silently via the /S option
(defun DLLRegister (dIl) (startapp "'regsvr32.exe' (strcat /s \'"" dll "\'"")))

;; Calls REGSVR32 to un-register a DLL silently via the /U /S options
(defun DLLUnRegister (dIl) (startapp "regsvr32.exe" (strcat "/u /s \"" dIl "\'"")))

;; Returns the ProglID for a given ClasslID if found in registry
(defun ProglD->ClassID (ProglD)
(vl-registry-read (strcat "HKEY_CLASSES ROOT\\" progid "\\CLSID"))

102

)

;5 Registers ObjectDBX (if not already), Returns ProglD if successful
(defun DBX-Register (/ classname)
(setq classname "ObjectDBX.AxDbDocument')
(cond
((ProglIbD->ClasslID classname))
((and
(setq server (findfile "AxDbl1l5.dII'))
(DLLRegister server)
(ProgID->ClassID classname)

(ProgID->ClassID classname)

)
((not (setq server (findfile "AxDb15.dI1')))
(alert "Error: Cannot locate ObjectDBX Type Library (AxDbl5.d11)...")
)
T
(DLLRegister "ObjectDBX.AxDbDocument')
(or
(ProgID->ClassID "ObjectDBX.AxDbDocument')
(alert "Error: Failed to register ObjectDBX ActiveX services...")
)
D)
)
)

Figure 14-1 — Visual LISP functions to load the ObjectDBX interface.

The (dilregister) function is a general-purpose tool you can use to perform a
Windows DLL registration on a client using the REGSVR32 command through a shell
operation. The /S parameter denotes a silent registration which suppresses any
notifications during the registration process.

The (dIlunregister) function performs the opposite of (dllregister), whereby it
removes a DLL’s registration from a local machine. This is often useful for removing a
DLL when you need to register an updated version of the same DLL.

The (progid->classid) function performs a look-up of a given class registration in the
Windows Registry and returns the GUID, which is a lengthy encoded unique identifier
for a given ActiveX component. No two GUID values are the same as they are generated
by a complex hashing algorithm during compilation. This particular function verifies that
a given DLL has been registered by checking for its GUID in the registry. If no GUID is
found, the DLL has not been registered yet, and this returns nil. Then you can use
(dllregister) to register the DLL on the client machine.

The following function in Figure 14.1A opens a remote drawing document and returns
the DBX document object if successful, otherwise it returns nil. You can use this
function to take care of the messy stuff and simply use the returned document object to
perform any operations you desire.

(defun DBX-doc-open (filename / dbxdoc)
(cond
((findfile filename)
(if (not (DBX-Register))
(exit)

)
(setq dbxdoc
(vla-getinterfaceobject
(vlax-get-acad-object) "ObjectDBX.AxDbDocument'™))

103

(cond
((vl-catch-all-error-p

(vl-catch-all-apply
“vla-Open (list dbxdoc (findfile filename))

)
(princ "\nUnable to open drawing.')
(exit)

)

(T dbxdoc)

)
)
)
)

Figure 14.1A — ObjectDBX Document Opening Function

Now you have a nice little black-box function to open drawings remotely, so you can
move on to wrapping inside bigger and better things, like returning table lists and so
forth. You can also modify certain properties of remote drawings through DBX.

(defun DBX-GetTableList
(filename tblname / dbxdoc out name)
(cond
((setq dbxdoc (DBX-doc-open filename))
(vlax-For tblltem (DBX-TableGet tbIName dbxdoc)
(setq name (vla-get-Name tblltem))
(if (/= (substr name 1 1) "*')
(setq out (cons name out))

(vlax-release-object dbxdoc)
)
(T

(strcat (princ '\nUnable to open file: " filename))

(if out (reverse out))

(defun DBX-TableGet (tName object)

(cond
((= (strcase tName) "BLOCKS™) (vla-get-Blocks object))
((= (strcase tName) "LAYERS™) (vla-get-Layers object))
((= (strcase tName) "TEXTSTYLES'™) (vla-get-textstyles object))
((= (strcase tName) "DIMSTYLES'™) (vla-get-dimstyles object))
((= (strcase tName) "LINETYPES'") (vla-get-linetypes object))
C (or

(= (strcase tName) ""PLOTCONFIGURATIONS™)
(= (strcase tName) ""PAGESETUPS'™)

(vla-get-plotconfigurations object)

(= (strcase tName) "LAYOUTS'™) (vla-get-Layouts object))

(= (strcase tName) '""GROUPS'™) (vla-get-Groups object))

T

(vl-exit-with-error "\n(dbx-dwgscan error): Invalid table name specified.'™)

A laYaYald

D)
D)

Figure 14-2 — Visual LISP functions for using ObjectDBX to inspect drawing tables.

The functions shown in Figure 14-2 use the ObjectDBX “Open” method to access a given
drawing file and access a given table collection within it. Among the limitations of using
ObjectDBX is that you cannot access tables within any drawings you have opened in
your AutoCAD Documents collection, as this will generate an error. ObjectDBX enables

104

access even if a drawing is opened by another user, as long as it is not opened by the user
that is requesting to open the drawing through an ObjectDBX interface.

(defun DWGSCAN
($table $name $dwgfiles / $files $dwgs $path $collection n out)
(cond
((and $table $name $dwgfiles)
(princ
(strcat

"\nScanning "'
(itoa (length $dwgfiles))
" drawings for "
(strcase (substr $table 1 (1- (strlen $table))) t©)
" [$name "]..."

D)

)
(foreach n $dwgfiles
(cond
((setq $collection (DBX-GetTableList n $table))
(cond
((member (strcase $name) (mapcar “strcase $collection))
(setq out (cons n out))

)
(setq $collection nil)
)
(T (princ "\nUnable to query table collection in target drawing.'))
))
D)
)
(T (princ "\nUsage: (DWGSCAN tablename itemname drawingfiles)'))

(if out (reverse out))

Figure 14-3 - Sample Visual LISP function using ObjectDBX methods

Figure 14-3 shows a function that uses the functions in Figures 14-1 and 14-2 to perform
a search of a list of drawings for a specified table item. If you load the example file dbx-
dwagscan.Isp into your AutoCAD session, you can use the (dwgscan) function to search
for items in other drawings. The example below demonstrates using (dwgscan) to search
a list of drawings for a block named “Chair123”.

Command: (dwgscan "Blocks" "'Chairl23" dwgfiles)
Scanning 51 drawings for block [Chairil23]...
(""c:\\drawings\\plan003.DWG"

"c:\\drawings\\plan004 .DWG""
"c:\\drawings\\plan005.DWG"")

Some things to note about using ObjectDBX services from Visual LISP:

e You cannot perform selection set operations on drawings through DBX. Only
table operations can be used.

e You cannot open any documents that are opened in the Documents collection of
the AutoCAD session performing the DBX operation.

e ObjectDBX does not support using any “command” operations on documents.

105

e Be sure to release a DBX object when finished using it, and use (gc) following
any object release of an external process (external to the AutoCAD namespace).

The document interface exposed through ObjectDBX is quite a bit more restrictive than
that of a document object internal to a given AutoCAD editing session. Below is a table
of the exposed properties and methods of an ObjectDBX Document object. You can see
this yourself by performing (vlax-dump-object) on an active DBX document object,
such as that returned by the (DBX-Doc-0pen) function shown above.

Some interesting notes: Document-centric system variables are not exposed. The
Application object is also not present as the document is not actually opened in the
Application namespace in a manner like a drawing opened for editing. The Name
property is NOT read-only. Notice the methods that are available.

; IAxDbDocument: 1AxDbDocument Interface

; Property values:

; Application (RO) = Exception occurred
Blocks (RO) = #<VLA-OBJECT IAcadBlocks 037aad64>
Database (RO) = #<VLA-OBJECT lAcadDatabase 037ac634>
Dictionaries (RO) = #<VLA-OBJECT lAcadDictionaries 037a8a34>
DimStyles (RO) = #<VLA-OBJECT lAcadDimStyles 037a8954>
ElevationModelSpace = 0.0
ElevationPaperSpace = 0.0
Groups (RO) = #<VLA-OBJECT lAcadGroups 037acd24>
Layers (RO) = #<VLA-OBJECT lAcadlLayers 037acc44>
Layouts (RO) = #<VLA-OBJECT lAcadlLayouts 037acha4>
Limits = (0.0 0.0 12.0 9.0)
Linetypes (RO) = #<VLA-OBJECT lAcadLineTypes 037a8e84>
ModelSpace (RO) = #<VLA-OBJECT lAcadModelSpace 037a8dd4>
Name = *"C:\\Documents and Settings\\steind\\My Documents\\DRAWING3.dwg""
PaperSpace (RO) = #<VLA-OBJECT lAcadPaperSpace 037a8d24>
PlotConfigurations (RO) = #<VLA-OBJECT lAcadPlotConfigurations 037a8bf4>
Preferences (RO) = #<VLA-OBJECT lAcadDatabasePreferences 037ac694>
RegisteredApplications (RO) = #<VLA-OBJECT lAcadRegisteredApplications 037a8b34>
TextStyles (RO) = #<VLA-OBJECT lAcadTextStyles 037a93a4>
UserCoordinateSystems (RO) = #<VLA-OBJECT IAcadUCSs 037a92f4>
Viewports (RO) = #<VLA-OBJECT IlAcadViewports 037a9le4>

; Views (RO) = #<VLA-OBJECT lAcadViews 037a9124>

; Methods supported:

; CopyObjects (3)
DxfIn (2)
Dxfout (3)
HandleToObject (1)
ObjectldToObject (1)
Open (1)
RegisterLicenseObject (2)
RevokeLicenseObject (1)
Save ()
SaveAs (1)

ObjectDBX is indeed a cool puppy to play with. When most programmers discover it
and learn what it can do, they immediately ask if it’s available for use outside of
AutoCAD. Well, yes, it is, but it’s very expensive to license from Autodesk for an
individual developer.

106

Chapter 15 — XDATA and XRECORDs

AutoCAD provides a few ways to store information in drawings that is non-graphical.
This can include a variety of data types such as numbers, text and so forth. Of these, the
two most common are Extended Entity Data (EED) and Dictionaries. The most common
form of EED is XDATA, which is an extension of all graphical entities as well as many
table objects such as Layers and Linetypes. This allows you to store hidden (non-
graphical) information within these entities or table objects and retrieve the information
when required.

Another form of storing non-graphical information is through the use of XRECORD
objects. XRECORD objects are part of the Document object and allow you to store
string information within a Dictionary collection.

The advantages of using XDATA are that the information is attached to a specific entity
or table member. The advantages to using XRECORD obijects is that they are attached to
the Document itself, and not to any particular entity or table object. In addition, XDATA
has certain limits on the size of the data that can be stored on a given entity or table
member. XRECORD objects do not impose any size limitation on data storage, but it
does affect the DWG file size, and memory requirements when the drawing is opened.

Working with XDATA

Xdata can be attached to and retrieved from any graphical entity in a drawing, as well as
many table objects, such as layers, layouts and linetypes. Xdata divides information
storage by the data type, so you have to be aware of the type of information you intend to
store whenever you attach it to anything, as well as when you attempt to retrieve it. For
example, if you attach an integer value to an entity and attempt to retrieve it as though it
were a string value, you will not get the desired results.

Working with XRECORD Objects

XRECORD obijects are maintained as a Dictionary, meaning they have a unique name
and are accessed by that name. They are attached to the document object itself, not to
any graphic objects or tables as is the case with Xdata. Xrecords are stripped from a
drawing if it is saved back to R12 or often when converted to another CAD format that
does not support them.

Because XRECORD objects are attached to the document, they are safe from casual
deletion by users. For example, if you attach XDATA to a layer, and that layer is purged,
the XDATA is then released as well. You can attach XDATA to layer “0” to prevent
this, however, XDATA still imposes limits on data type and data size that can be stored.

Xrecords can only be created, renamed or deleted. There are no direct methods for
modifying them. The only way to modify an Xrecord is to retrieve its contents, delete the
Xrecord from the dictionary object, and recreate a new Xrecord with new data. The
following functions demonstrate how to do this using standard AutoLISP.

107

(defun Xrecord-Rebuild (name dat)
(Xrecord-Delete name)
(Xrecord-Add name dat)

)

(defun Xrecord-Get (name / xlist)
(if (setqg xlist (dictsearch (namedobjdict) name))
(cdr (assoc 1 xlist))
)
)

(defun Xrecord-Delete (name)
(dictremove (namedobjdict) name); remove from dictionary

)

(defun Xrecord-Add
(name sdata / Xxrec xname)
(setq xrec
(list
(cons 0 "XRECORD'™)
(cons 100 *"AcDbXrecord™)
(cons 1 sdata)
(cons 62 1)

)

(setqg xname (entmakex xrec)); rebuild xrecord
(dictadd (namedobjdict) name xname); return to dictionary
(princ)

)

The problem with the above form is that it uses (entmake) and can sometimes cause
problems in AutoCAD when mixed with certain other ActiveX functions. A more
appropriate form would be the ActiveX approach as shown in the examples below.

(vI-load-com)

(defun Xrecord-Rebuild (dict name data)
(Xrecord-Delete dict name)
(Xrecord-Add dict name data)

)

(defun Xrecord-Get
(dict name / acadapp doc dcs odc xrec #typ #dat out)
(setq acadapp (vlax-get-acad-object)
doc (vla-get-activedocument acadapp)
dcs (vla-get-dictionaries doc)
)
(cond
((setq odc (dsx-item dcs dict))
(cond
((setq xrec (dsx-item odc name))
(vla-getXrecordData xrec "#typ "#dat)
(setq #typ (vlax-safearray->list #typ)
#dat (vlax-safearray->list #dat)

(setq out (mapcar “vlax-variant-value #dat))
(vlax-release-object odc)
)
)

(vlax-release-object dcs)
)

108

out

)

(defun Xrecord-Delete (dict name / dcs odc xr)
(setq dcs (vla-get-dictionaries active-doc))
(cond

((setq odc (dsx-item dcs dict))
(cond
((setq xr (dsx-item odc name))
(vla-delete xr)
(vlax-release-object xr)

)

(vlax-release-object odc)

)
)

(vlax-release-object dcs)

)

(defun Xrecord-Add
(dict name data / acadapp doc dicts dict xrec #typ #dat)
(setq acadapp (vlax-get-acad-object)
doc (vla-get-activedocument acadapp)
dicts (vla-get-Dictionaries doc)
dict (vlax-invoke-method dicts "Add" dict)
xrec (vla-AddXrecord dict name)

)
(if (not (listp data)) (setq data (list data))); ensure list!
(vla-setXrecordData xrec
(List->VariantArray
(List->IntList data)
"vlax-vblnteger

(List->VariantArray data "vlax-vbVariant)

)

(vla-getXrecordData xrec "#typ "#dat)
(setq #typ (vlax-safearray->list #typ)

#dat (vlax-safearray->list #dat)
)

(mapcar “vlax-variant-value #dat)

)

The two functions (List->variantArray) and (List->IntList) are used to define the
safearray contents and dimension respectively. They can be used for much more than
this obviously. The second argument to (List->variantArray) must be a single-quoted
ActiveX data type declaration such as “viax-vbString.

(defun List->VariantArray (Ist datatype / arraySpace sArray)
(setq arraySpace
(vlax-make-safearray
(eval datatype)
(cons 0 (1- (length Ist)))
)
)
(setq sArray (vlax-safearray-fill arraySpace Ist))
(vlax-make-variant sArray)

)
(defun List->IntList (Ist 7 n)

109

(setqg n 0)
(mapcar (function (lambda (xX) (setqg n (1+ n)))) Ist)

The other function (dsx-item) is used to fetch (or attempt to fetch) an item using the Item
method of a collection. This function includes error catching in case the fetch fails,
which returns an ActiveX error instead of something like nil. In this case, we trap an
error and return nil if the fetch fails. Otherwise, we return the object from the collection.

(defun DSX-I1tem (collection item / out)
Qi
(not
(vl-catch-all-error-p
(setq out
(vl-catch-all-apply “vla-item (list collection item))
)

)
)

out ; return object or nil

)
)

To demonstrate how to use this stuff we’ll save an Xrecord in our current drawing with
some information such as the current username (assuming we’re on Windows NT, 2000
or XP) and some other information.

(setq username (getenv “username’); logged on user ID
machine (getenv “computername’); NETBIOS computer name
)

(Xrecord-Rebuild “PERSONAL” “UserData” (list username machine))
_$ Returns (“DSTEIN1234” “W2K-1234")

(Xrecord-Get “PERSONAL” “UserData’)
_$ Returns (“DSTEIN1234” “W2K-1234"")

(Xrecord-Rebuild “PERSONAL” ““UserData” “1234”)
_$ Returns (*1234™)

So, what can you do with Xrecords? Anything you want. They are very useful for
storing information in a drawing that is not tied directly to any particular entity or table.
If you are used to storing information in Xdata, you are probably aware that if the entity
or table item is deleted the Xdata is lost. Of course, you can attach Xdata to things like
Layer “0” or the like, so it never gets deleted. However, Xdata imposes limitations on
contents that might be alleviated by switching to Xrecords instead.

110

Chapter 16— The AutoCAD Application Object

The AcadApplication object is the root of everything Visual LISP can address relating to
ActiveX. This includes collections, properties, methods, events and derived objects that
inherit from this base object. Remember, the ActiveX object model is a hierarchy of
classes that allow for lower level classes to be derived that contain properties and
methods of their parent classes. In order to gain access to anything within AutoCAD,
you must first start by gaining access to AutoCAD itself, and then work your way down
into whatever you need.

For example, if you want to access the Layers collection and fetch a particular layer, you
must first get the AcadApplication object, then the ActiveDocument object, and then get
the Layers collection from that object. One way to begin understanding the
AcadApplication object is by dumping the object using the (vlax-dump-object)
function. This function takes one required argument (the object) to request a list of its
properties, and an optional flag, which if provided (and non-nil) requests a list of methods
as well.

Command: (vlax-dump-object (vlax-get-acad-object) T)

; lAcadApplication: An instance of the AutoCAD application

; Property values:

; ActiveDocument = #<VLA-OBJECT IAcadDocument 0Oed7eOc>
Application (RO) = #<VLA-OBJECT IAcadApplication 00a8a730>
Caption (RO) = "AutoCAD 2002 - [C:\\Documents and Settings\\...\\Drawingl.dwg]"
Documents (RO) = #<VLA-OBJECT lAcadDocuments 00f20ef0>
FullName (RO) = *"C:\\Program Files\\AutoCAD 2002\\acad.exe"
Height = 723
Localeld (RO) = 1033
MenuBar (RO) = #<VLA-OBJECT IAcadMenuBar 053247f4>
MenuGroups (RO) = #<VLA-OBJECT lAcadMenuGroups 01433208>
Name (RO) = "AutoCAD"

Path (RO) = "C:\\Program Files\\AutoCAD 2002"

Preferences (RO) = #<VLA-OBJECT lAcadPreferences 053277fc>
Statusld (RO) = ...Indexed contents not shown...

VBE (RO) = #<VLA-OBJECT VBE 03d618f4>

Version (RO) = "15.06"

Visible = -1

Width = 1032

WindowLeft = -4

WindowState = 3

; WindowTop = -4

; Methods supported:

; Eval (1)

GetAcadState ()
GetlInterfaceObject (1)
ListArx O
LoadArx (1)
LoadDVB (1)

Quit O

RunMacro (1)
UnloadArx (1)
UnloadDVB (1)
Update O

ZoomAll O
ZoomCenter (2)
ZoomeExtents ()
ZoomPickWindow ()
ZoomPrevious ()
ZoomScaled (2)
ZoomWindow (2)

111

Figure 16-1 — (vlax-dump-object) results on the AcadApplication object.

While you might expect the list of Properties, Collections and Methods to be much larger
for the AcadApplication object, remember that the Object Model is a tree structure. This
means that much of the complexity is delegated at multiple levels, such as down into the
Documents collection, the Preferences collection and so forth. The items shown in
Figure 16-1 apply only to the AcadApplication object and nothing else.

To demonstrate a tiny bit of what you can do with the AcadApplication object, load and
run the following sample of code. This will minimize the AutoCAD session window and
then maximize it after a short pause.

(defun MinMax (/ acadapp)
(vi-load-com)
(setq acadapp (vlax-get-acad-object))
(vla-put-windowstate acadapp acMin)
(vl-cmdf “DELAY”” 1000)
(vla-put-windowstate acadapp acMax)
(vlax-release-object acadapp)

)

Minimizing AutoCAD can come in handy when you intend to write a program that
launches another application. Quite often, AutoCAD will jump back to the front and hide
the other application window because it attempts to regain “focus” from the Windows
application stack. This doesn’t always happen, but it happens frequently. One way to
avoid this is to hide AutoCAD after you launch the other application. This will prevent it
from popping back in front of the other application window.

(defun ShowNotepad (filename / acad fn)
(vi-load-com)
(cond
((setq fn (Findfile filename)); make sure file exists first

(setq acadapp (vlax-get-acad-object))
(vla-put-windowstate acadapp acMin)
(vlax-release-object acadapp)
(startapp “notepad.exe” fn)

(T (princ (strcat “\nFile not found: “ Ffilename)))
))

Another solution is to use a third-party function such as the DOSIlib function
(dos_exewait) Which launches another application and suspends AutoCAD until the
other application session is terminated (closed).

{iP!

The Path property of the AcadApplication object shows the path to where
ACAD.EXE resides on the local machine. This can be used to get the actual installation
path when performing modifications to the support files path list within the

AcadPreferences Files collection.

112

Here’s a twist. Let’s say you have a LISP or VLX program that needs to interface with a
VBA application. The VBA application is loaded as a DVB project macro or macro
collection. Maybe you’d like to be able to query AutoCAD to see if the DVB is currently
loaded and available for use. How can this be done? Easy. If you look at the properties
list above, you’ll see one named VBE. What’s this? VBE is the Visual Basic
Environment object. You can access this object and request a list of loaded projects from
it using VLISP:

(defun VBA-Loaded (/ vb vbp vbc out vbe i vbl vbn)
(setq vb (vla-get-vbe (vlax-get-acad-object))
vbp (vlax-get-property vb “vbprojects’)

)
(if (> (vla-get-count vbp) 0)
(progn
(setqg 1 1)
(repeat (vla-get-count vbp)
(setq vbe (vla-item vbp 1)
vbn (vlax-get-property vbe "filename'™)
vbl (strcat
(vi-filename-base vbn)
(vil-filename-extension vbn)

)

out (cons vbl out)

i+ i)

(vlax-release-object vbe)
))
)
)

(vlax-release-object vb)
(if out (acad_strlsort out))

)

Note that you can only access the “vbprojects” property using (vlax-get-property). For
some reason, this is one of the few properties within AutoCAD that won’t work with
(vla-get-property). This function will return as list of loaded DVB projects in the
following manner:

_$ (VBA-Loaded) Returns: (“'namel.dvb™ '‘name2.dvb™...)
If you inspect the VBE object you’ll find some interesting properties...

(vlax-dump-object (vla-get-vbe (vlax-get-acad-object)) t)
; VBE: nil

; Property values:

; ActiveCodePane = nil
ActiveVBProject = nil
ActiveWindow (RO) = nil

Addins (RO) = #<VLA-OBJECT _AddIns 046alad44>

CodePanes (RO) = #<VLA-OBJECT _CodePanes 001846f8>
CommandBars (RO) = #<VLA-OBJECT _CommandBars 0510a9f0>
Events (RO) = #<VLA-OBJECT Events 046a1984>

MainWindow (RO) = #<VLA-OBJECT Window 046alb84>
SelectedVBComponent (RO) = nil

VBProjects (RO) = #<VLA-OBJECT _VBProjects 046a1934>

; Version (RO) = "6.03"

; Windows (RO) #<VLA-OBJECT _Windows 046ala04>

; No methods

113

»fil’!
Get the ActiveCodePane object and drill down into the CodeModule object and
continue on from there. Very powerful stuff if you find a way to put it to use.

114

Chapter 17 — AutoCAD Entities

AutoCAD Entities are graphical objects such as ARC, CIRCLE and LINE objects. The
term entity is synonymous with graphical object in the context of ActiveX programming
within AutoCAD. All entities are derived from the base class named AcDbEntity, which
provides certain default properties and methods to all entitles. Some default properties
are Layer and Color, while some default methods are Copy and Delete.

Some properties are common to all objects. Some properties are common to groups of
objects, but not all objects. Some properties are specific to a given object type. To
access or modify object properties using Visual LISP, use the following examples:

(vla-get-propertyname object) where propertyname might be color or linetype. You can
also use the alternate form (vlax-get-property object propertyname) if desired. These
are interchangeable when it comes to working with AutoCAD objects.

(vla-put-propertyname object value) where propertyname might be color or linetype and
value might be acRed or “dashed”. You can also use the alternate form (vlax-put-
property object propertyname value) if desired. Again, these are interchangeable when
working with AutoCAD objects.

All Objects — Common Properties

Property Description Data Type DXF
Application (RO) AutoCAD session Object (pointer)

Color Entity color Integer/Enum 62 (transient)
Document (RO) Parent document Object (pointer)

Handle Entity Handle ID String 5
HasExtensionDictionary Has XDATA attached Boolean

(RO)

Hyperlinks (RO) Web links Object (collection)

Layer Entity layer String 8

Linetype Entity linetype String 6 (transient)
LinetypeScale Entity linetype scale Real/Double

Lineweight Entity lineweight Integer/Enum

ObjectID (RO) Object ID value Integer

ObjectName (RO) Name of Entity type String 0

OwnerlD (RO) Parent object Integer

Normal Extrusion Vector Array 210
PlotStyleName Name of PlotStyle String

Thickness Entity thickness Real/Double 39 (transient)
TrueColor RGB/Pantone Color Value acCmColor/Object

Visible Toggles display Boolean

Layout-Name (N/A) 410

** Depends upon use of Color-Based or Named plotstyles in active drawing.

The ARC object

Property Description Data Type DXF
ArcLength (RO) Perimeter length Double

Area Enclosed area Double

Center Center Point Array 10
EndAngle Ending Angle Double 52
EndPoint End Point Array

Radius Radius value Double 40
StartAngle Starting Angle Double 51
StartPoint Start point Array

TotalAngle (RO) Total angle in radians Double

115

Special notes about ARC objects:

You cannot change the start point of an arc or ellipse. To edit an arc, use the EndAngle
and Radius properties. To edit an ellipse, use the EndAngle, MajorAxis, and RadiusRatio

properties.

The Area property is calculated in square drawing units as though it were closed by a

vector from the startpoint to the endpoint. This is not the same as the area of a circular

segment, which would include the area from the centerpoint out to the perimeter as a
portion of the total circular area.

The CIRCLE entity

Property
Area
Center
Diameter
Radius

Enclosed area

Diameter value

DXF

10

40

The RotatedDimension (LinearDimension) entity

Property
AltRoundDistance

AltSuppressLeadingZeros
AltSuppressTrailingZeros

AltSuppressZeroFeet
AltSuppressZerolnches
AltTextPrefix
AltTextSuffix
AltTolerancePrecision

AltToleranceSuppressLeadingZeroes
AltToleranceSuppressTrailingZeroes

AltUnits
AltUnitsFormat
AltUnitsPrecision
AltUnitsScale
Arrowhead1Block
Arrowhead1Type
Arrowhead2Block
Arrowhead2Type
ArrowheadSize
DecimalSeparator
DimensionLineColor
DimensionLineExtend
DimensionLineWeight
DimLinelSuppress
DimLine2Suppress
DimLinelnside
ExtensionLineColor
ExtensionLineExtend
ExtensionLineOffset
ExtensionLineWeight
ExtLinelSuppress
ExtLine2Suppress

Fit

ForceLinelnside
FractionFormat
HorizontalTextPosition
LinearScaleFactor
Measurement (RO)
PrimaryUnitsPrecision
Rotation
RoundDistance

Data Type DXF
Double

Integer

Integer

Integer

Integer

String

String

Integer

Integer

Integer

Integer

Integer

Integer

Double

String

Integer

String

Integer

Double

String

Integer

Double
Integer/Enum
Integer/Boolean
Integer/Boolean
Integer
Integer/Enum
Double

Double
Integer/Enum
Integer/Boolean
Integer/Boolean
Integer

Integer
Integer/Enum
Integer/Enum
Double

Double

Integer

Double

Double

116

ScaleFactor
StyleName
SuppressLeadingZeroes
SuppressTrailingZeroes
SuppressZeroFeet
SuppressZerolnches
TextColor

TextGap

TextHeight

TextInside
TextInsideAlign
TextMovement
TextOutsideAlign
TextOverride
TextPosition
TextPrefix
TextRotation
TextStyle

TextSuffix
ToleranceDisplay
ToleranceHeightScale
ToleranceJustification
ToleranceLowerLimit
TolerancePrecision

ToleranceSuppressLeadingZeroes
ToleranceSuppressTrailingZeroes

ToleranceSuppressZeroFeet
ToleranceSuppressZerolnches

UnitsFormat
VerticalTextPosition

Scaling factor value
DimStyle name

Text color
Gap distance
Text height

Text movement

Override string
Text position
Prefix string value
Rotation (radians)
Name of text style
Suffix string value

Digits of precision

Notes Regarding Rotated Dimension Objects:

Double

String

Integer

Integer

Integer

Integer
Integer/Enum
Double

Double

Integer
Integer/Enum
Integer

Integer

String

Array

String

Double

String

String

Integer

Double
Integer/Enum
Double

Integer
Integer/Boolean
Integer/Boolean
Integer/Boolean
Integer/Boolean
Integer/Enum
Integer/Enum

Control points for extension lines and dimension lines are not exposed through ActiveX.

To obtain these control points you must use the DXF entity codes 10, 11, 13, and 14.

They are described as follows:

13 = Start point of first extension line (first control point)

14 = Start point of second extension line (second control point)
11 = Middle-Center point of MTEXT label
10 = Arrowhead point of second dimension line

1* Pick Point

The ELLIPSE entity

Property
Area

Center
Diameter
EndAngle
EndParameter
EndPoint (RO)

Description
Enclosed area
Center Point
Diameter value
End Angle (Arc)
End Parameter
Endpoint (Arc)

Data Type
Double
Array
Double
Double

Array

2 O
OO

2" Pick Point

DXF

10

42

117

MajorAxis
MajorRadius
MinorAxis
MinorRadius
RadiusRatio
StartAngle
StartParameter
StartPoint (RO)

Axis Endpoint

Major Radius

Axis Endpoint

Minor Radius

Ratio of Major/Minor
Start Angle (Arc)
Start parameter
Start Point (Arc)

Notes regarding ELLIPSE obijects:

Array/Doubles
Double
Array/Doubles
Double
Double
Double

Array

11

40

41

If the Ellipse is closed, the StartAngle value is 0 and the EndAngle value is 2*Pi.

You cannot change the Startpoint or Endpoint properties of an Ellipse.

The LEADER entity

Property
StartPoint

The LINE entity

Property
Angle (RO)
Delta (RO)
EndPoint
Length (RO)
StartPoint

Description
Start Point

Description
Angle

Offset X and Y
End Point
Length

Start Point

The LWPOLYLINE entity

Property

Area

Closed
ConstantWidth
Coordinate
Coordinates
Elevation
LinetypeGeneration

Type

Description
Enclosed Area
Closed flag
Default width

Vertices List
Z-elevation
Linetype Gen flag
Curve Fit Type

Notes regarding LwPolyline entities:

Data Type
Array

Data Type
Double
Array
Array
Double
Array

Data Type
Double
Integer/Boolean
Double

Array
Array/Doubles
Double
Integer/Boolean
Integer/Enum

DXF
10

DXF

11

10

DXF

40

10

Breaking a LwPolyline results in the remaining pieces being converted into PolyLine
entities. The TYPE property is transient, meaning that if the entity has not been curve-
fitted (spline, bezier, cubic) this property is not exposed. Once a curve-fitting is applied,
the TYPE property is available.

The MLINE entity

Property
Angle (RO)
Coordinates
Delta (RO)
EndPoint
Length (RO)
StartPoint
StyleName

Description

Angle

Vertices List

Offset X and Y

End Point

Length

Start Point

Name of MLINE style

The MTEXT entity

Property

Description

Data Type
Double
Array/Doubles
Array

Array

Double

Array

String

Data Type

DXF

10

DXF

118

AttachmentPoint Basepoint Array 10

DrawingDirection Text Flow Integer/Enum

LineSpacingFactor Row Spacing Factor Double

LineSpacingStyle Mode to apply factor Integer/Enum

Rotation Rotation Angle Double 50
StyleName Style Name String 7
TextString String Value String 1
Width Frame Width Double

Notes Regarding MTEXT obijects:

Linespacing is factored using the base Height value. When varying heights are used in a
given string, the LineSpacingFactor property is applied against the base Height property
value only.

Fraction stacking behavior is controlled by the TSTACKSIZE and TSTACKALIGN
system variables. TSTACKSIZE is an integer that denotes “per 100 or percentage of
text height the size of the fraction is. A value of 70 denotes (0.7 * Height).
TSTACKALIGN controls how stacking is applied. 0=no stacking, 1=diagonal (e.g. ¥4),
2=vertical (e.g. horizontal bar).

Formatting Control Codes:

“\\P”” denotes line-feed/carriage return
“\\S” denotes fraction stack begin grouping

“\\A” denotes relative height change (using relative factor against base Height property)

The POINT entity

Property Description Data Type DXF
Coordinates Basepoint Array 10

Notes Regarding POINT Entities:

The display of POINT entities is controlled by the PDMODE system variable. A setting
of 1 hides them. A setting of O or another positive number displays them with various
symbol types. The PDSIZE system variable controls the relative size of POINT symbols
with respect to the zoom factor.

The POLYLINE entity

Property Description Data Type DXF
Area Enclosed Area Double

Closed Closed flag Integer/Boolean

ConstantWidth Default width Double 40
Coordinate Array

Coordinates Vertices List Array/Doubles 10
Elevation Z-elevation Double

LinetypeGeneration Linetype Gen flag Integer/Boolean

Type Curve Fit Type Integer/Enum

The RAY entity

Property Description Data Type DXF
BasePoint Base point Array/Doubles

119

DirectionVector
SecondPoint

The SOLID entity

Property
Coordinate
Coordinates

Vector Axis Point
Pick Point

Description
5

Verticies List

The SPLINE entity

Property
Coordinates

The TEXT entity

Property
Alignment
Backward

Height
InsertionPoint
ObliqgueAngle
Rotation
ScaleFactor
StyleName
TextAlignmentPoint
TextGenerationFlag
TextString
UpsideDown

Description
Basepoint

Description
Alignment Type
Backwards flag
Text Height
Base Point
Oblique angle
Rotation Angle
Width Factor
Text Style Name
Alignment Point
Generation Flag
String Value

The TRACE entity

Property
Coordinate
Coordinates

Description

Verticies List

The VIEWPORT entity

Property
ArcSmoothness
Center

Clipped (RO)
CustomScale
Direction
DisplayLocked
GridOn

Height
LensLength
RemoveHiddenLines
SnapBasePoint
SnapOn
SnapRotationAngle
StandardScale
Target
TwistAngle
UCSIconAtOrigin
UCSlIconOn
UCSPerViewport
ViewportOn
Width

The XLINE entity

Property
BasePoint
DirectionVector
SecondPoint

Description

View Resolution
Center Point
Clipped Boundary
Scale in Mspace
View direction vector
Locked zoom/pan
Grid display

Height in Paperspace
Lens length value
Hide lines

Snap basepoint
Display snap

Snap rotation angle
ZoomXP factor
Target vector point
Twist Angle

Show UCS origin
Show UCS icon
UCS per viewport
Display Viewport
Width in Paperspace

Description
Pick Point 1
Axis Direction Point
Pick Point 2

Array/Doubles
Array/Doubles

Data Type
Array
Array/Doubles

Data Type
Array

Data Type
Integer/Enum
Integer/Boolean
Double
Array/Doubles
Double

Double

Double

String
Array/Doubles
Integer/Enum
String
Integer/Boolean

Data Type

Array/Doubles

Data Type
Integer
Array/Doubles
Integer/Boolean

Array/Doubles
Integer/Boolean
Integer/Boolean
Double

Double
Integer/Boolean

Array/Doubles (2D)

Integer/Boolean
Double
Integer/Enum
Array/Doubles
Double
Integer/Boolean
Integer/Boolean
Integer/Boolean
Integer/Boolean
Double

Data Type

Array/Doubles
Array/Doubles
Array/Doubles

DXF

DXF

DXF

40

50
41

11

DXF

DXF

-1 (:vlax-True)
-1 (:vlax-True)

DXF

120

Chapter 18 — Documents

Drawings are considered Documents in a general sense and this is how they are referred
to from a programmatic point of view within AutoCAD as well as within most other
ActiveX-enabled applications. Document objects are members of the Documents
collection within AutoCAD.

To access the current drawing session you can request the ActiveDocument property of
the AcadApplication object, without having to go to the Documents collection. However,
if you need to access another document or iterate through all opened documents, you will
need to access the Documents collection.

The Documents Collection

The Documents collection contains all opened documents in the active AutoCAD session.
Each time you create or open another drawing, it is immediately added to this collection.
Documents are normally entered into the Documents collection in the order they were
opened. To navigate a collection, you can use the (vlax-for) function to process all
members, or use the (vla-lItem) method to access an individual member by index
location or name if desired.

[AcadApplication]
Documents
—[Document]
—[Document]
—[Document]

Figure 18-1 — The Documents collection and Document objects.

(defun Documents-ListAll (7/ out)
(vlax-for each (vla-get-documents (vlax-get-acad-object))
(setq out (cons (vla-get-name each) out))

(if out (reverse out))

Figure 18-2 — Listing all opened documents by name

Figure 18-2 shows an example code snippet for retrieving a list of all opened document
names in the current AutoCAD session. Using the (vlax-for) iteration function, which
is almost identical to the AutoLISP (foreach) function, we can loop through the
Documents collection and fetch the Name property of each document and produce a list
output.

121

You could adapt this piece of code very easily to perform other tasks on each document,
or to search the documents for a particular condition and act on them as a result.

What else can you do with the Documents collection? Well, let’s begin by inspecting
what properties and methods the Documents collection supports:

_$ (setqg docs (vla-get-documents acadapp))
#<VLA-OBJECT IAcadDocuments 00¥20440>

_$ (vlax-dump-object docs T)
IAcadDocuments: The collection of all AutoCAD drawings open in the
current
session
; Property values:
; Application (RO) = #<VLA-OBJECT lAcadApplication 00a8a730>
; Count (RO) =1
; Methods supported:
; Add (1)
; Close O
; Item (1)
; Open (2)

There are only two properties, but there are four methods. As | mentioned earlier, VLISP
does not provide a means for modifying collection properties. It usually sports a set of
methods for adding, accessing and deleting members within them however. In this case,
the Add method is synonymous with the command NEW, and the Open method is, well,
the same as the command OPEN.

To access an individual drawing that you have opened, you can use the Item method with
either the name of the document or the index number (its position in the collection). I’ll
get the object for the “Drawingl.dwg” document that | happen to have opened right now:

_$ (setq dwg (vla-item docs "Drawingl.dwg™))
#<VLA-OBJECT IAcadDocument 0OedleOc>

Now I can inspect this document object to see what properties and methods it provides:

_$ Command: (vlax-dump-object dwg T)

; 1AcadDocument: An AutoCAD drawing

;Property values:

; Active (RO) = -1

; ActiveDimStyle = #<VLA-OBJECT IAcadDimStyle 00f20034>

; ActivelLayer = #<VLA-OBJECT lAcadlLayer 00f21c44>

; ActivelLayout = #<VLA-OBJECT lAcadLayout 00f21c04>

; ActivelLinetype = #<VLA-OBJECT IAcadLineType 00f228d4>

; ActivePViewport = AutoCAD: No active viewport in paperspace
; ActiveSelectionSet (RO) = #<VLA-OBJECT lAcadSelectionSet 00f211le4>
; ActiveSpace = 1

ActiveTextStyle = #<VLA-OBJECT IAcadTextStyle 00f22554>
ActiveUCS = #<VLA-OBJECT IAcadUCS 00f22234>

ActiveViewport = #<VLA-OBJECT IAcadViewport 00f22014>
Application (RO) = #<VLA-OBJECT lAcadApplication 00a8a730>
Blocks (RO) = #<VLA-OBJECT IAcadBlocks 00f23c04>

Database (R0O) = #<VLA-OBJECT lAcadDatabase 00f202f4>
Dictionaries (RO) = #<VLA-OBJECT lAcadDictionaries 00f23814>
DimStyles (RO) = #<VLA-OBJECT lAcadDimStyles 00f23544>
ElevationModelSpace = 0.0

122

; ElevationPaperSpace = 0.0

; FullName (RO) = ™"

; Groups (RO) = #<VLA-OBJECT lAcadGroups 00f23304>

; Height = 571

; HWND (RO) = 393946

; Layers (RO) = #<VLA-OBJECT lAcadLayers 00f23114>

; Layouts (RO) = #<VLA-OBJECT lAcadLayouts 00f24e94>

Limits = (0.0 0.0 12.0 9.0)

Linetypes (RO) = #<VLA-OBJECT lAcadLineTypes 00f24c44>
ModelSpace (RO) = #<VLA-OBJECT lAcadModelSpace 00f249e4>
MSpace = AutoCAD: Invalid mode

Name (RO) = *"Drawingl.dwg"

ObjectSnapMode = 0

PaperSpace (RO) = #<VLA-OBJECT IAcadPaperSpace 00f244d4>

Path (RO) = "C:\\Program Files\\AutoCAD 2002"
PickfirstSelectionSet (RO) = #<VLA-OBJECT IAcadSelectionSet 00f24024>
Plot (RO) = #<VLA-OBJECT lAcadPlot 00f25f5c>
PlotConfigurations (RO)=#<VLA-OBJECT IlAcadPlotConfigurations 00f25ea4>
Preferences (RO)=#<VLA-OBJECT IAcadDatabasePreferences 00f203b4>
ReadOnly (RO) = O

; RegisteredApplications(RO)=#<VLA-OBJECT AcadRegisteredApplications
00f259d4>

; Saved (RO) =0

; SelectionSets (RO) = #<VLA-OBJECT lAcadSelectionSets 00f22764>
; TextStyles (RO) = #<VLA-OBJECT lAcadTextStyles 00f25794>

; UserCoordinateSystems (RO) = #<VLA-OBJECT lAcadUCSs 00f25554>
; Utility (RO) = #<VLA-OBJECT lIAcadUtility 00f25384>

; Viewports (RO) = #<VLA-OBJECT lAcadViewports 00f252f4>

; Views (RO) = #<VLA-OBJECT IAcadViews 00f25014>

; Width = 978

; WindowState = 3

; WindowTitle (RO) = "Drawingl.dwg"

;Methods supported:

Activate

Auditinfo (1)

Close (2)

CopyObjects (3)

EndUndoMark O

Export (3)

GetVariable (1)

HandleToObject (1)

Import (3)

LoadShapeFile (1)

New (1)

ObjectldToObject (1)

Open (1)

PurgeAll O

; Regen (1)

; Save O

; SaveAs (2)

; SendCommand (1)

; SetVariable (2)

; StartUndoMark O

; Wblock (2)

Wow! If you’re not used to working with Visual LISP or ActiveX, you should be able to
see how powerful this is for you as a software developer. A careful review of the above
results will reveal all of the things you can get and modify with respect to a given
document. This was simply not possible with AutoLISP prior to Visual LISP. As you

123

can see, you now have direct access to all the tables, actually collections, within this
document, as well as system variables, methods and so forth.

Note that the Plot property is not a method at all. This is because the Plot property of the
Document object, is actually a pointer to the Plot object. The Plot object is how you
configure and execute printing within the ActiveX world in AutoCAD.

Let’s use some of these methods in conjunction with the Documents collection to see
how we can iterate all opened documents and perform a simple task on each one. How
about if we want to run the AUDIT command on all of our opened drawings:

(defun AllDocs-Audit (/ docs)
(vlax-for dwg (vla-get-documents (vlax-get-acad-object))
(vla-auditinfo dwg T); T denotes fix errors = Yes
)

)

We can also Save all opened documents as follows:

(defun AllDocs-Save (/ docs)
(vlax-for dwg (vla-get-documents (vlax-get-acad-object))
(vla-save dwg)
)
)

How about running the PURGE command on all opened documents?

(defun AllDocs-Purge (/ docs)
(vlax-for dwg (vla-get-documents (vlax-get-acad-object))
(vla-purgeall dwg)

)!
[]
m,nlng

Be careful when iterating the Documents collection to perform certain tasks.
Keep in mind that LISP operates in a document context, not an application context. This
means that while you can operate on other opened documents within the same application
namespace, you are still calling your changes from the document in which your function
was executed. You should always try to have your code return focus to the originating
document when it completes or when it fails due to an error. This is especially important
if you plan to implement reactors and invoke their callbacks from other drawing sessions
than the one in which you instantiated the reactors and callbacks.

124

Chapter 19 — The Preferences Objects

That’s not a misprint, the title of this Chapter mentions Objects (plural). The reason is
simply that there are two main Preferences collection objects within AutoCAD. The first
is the AcadPreferences collection object, which applies to AutoCAD itself. The second is
the Document Preferences collection object, also called the DatabasePreferences
collection object. The latter applies only to Document objects, not to AutoCAD.

To give you a better example, if you open the OPTIONS dialog form and browse
throughout all the available tabs, you’ll notice that many settings have a small drawing
icon symbol beside them. This denotes settings that are saved to the drawing only and do
not carry across to other drawing sessions. These items are actually part of the
DatabasePreferences collection.

[AcadApplication]

AcadPreferences

Documents

—[Document]

DatabasePreferences

[Object] Collection

Figure 19-1 — The AcadPreferences and DatabasePreferences collection objects
The AcadPreferences Collection Object

The AcadPreferences collection is actually a container for other collections, each having
their own objects. The graphical nature of the OPTIONS dialog form is not always
correct in how it represents these collections and should not be used as a guide or map for
understanding these collections. Some objects have different names and some are shown
as collections in OPTIONS but stored as a single object in the AcadPreferences object.

For example, the Support Path list shown in the OPTIONS File tab is displayed as a list
of sub items, string values of pathnames. This could easily be mistaken for being a
collection of paths. But in actuality it is a single string value with a semi-colon delimiter
between each path value and stored as the SupportPath property within the Files
collection. Confusing? It can be. Another example is the Data Sources Location path
setting on the Files tab of the OPTIONS dialog form. This is actually stored as the

125

WorkSpace property under the Files collection, not as DataSourcesPath or something
more intuitively named.

a Options EH
Current profile: aswzk-po Current drawing: StephenHa... 144618 dwg

Files IDispIa_l,ll Open and Savel F'Iottingl Systeml Lger Pleferencesl Draftingl Selectionl F'rofilesl

= Browsze... |

Add...

Search paths, file names, and file locations:

------ = Chasw2khiaswlk-p

------ = Chaswkicombays

------ =y CamwZk\comiimages Bl |

------ w—p ChamwZkicomimenu
------ =y C:Program FileshautoCAD 20024support &I
------ = C:\Program Files\AutoCAD 20024 fonts

foeve Do |
------ =y LC:%Program FileshautoCaD 20024help
------ = C:5\Program FileshautoCaD 2002\express b ﬂl

H- % Working Support File Search Path

H- Device Driver File Search Path

H- Project Files Search Path

H- ﬁ Menu, Help, and Miscellaneous File Mamnes

H- ﬁ Text Editor, Dictionary, and Font File Mames

A Piint File, Spooler, and Prolog Section Mames LI

Specify the folders in which AutaCAD should look for text fonts, menus, plug-ing, drawings to
inzert, inetypes, and hatch pattemns that are not in the curment folder,

Ok I Canecel | Anply | Help |

Figure 19-2 — The AutoCAD OPTIONS dialog form, Files tab displayed.

The AcadPreferences object has nine collection objects within it, one Property (the
Application property) and no Methods. The AcadPreferences collections roughly
correspond to the OPTIONS dialog tabs, sort of. Below is a list of the collection names
and their corresponding tabs in the OPTIONS dialog form:

Display = Display

Drafting = Drafting

Files = Files

OpenSave = Open and Save
Output = Plotting

Profiles = Profiles
Selection = Selection
System = System

e User = User Preferences

Figure 19-3 shows a dump of the AcadPreferences object using (vlax-dump-object (vla-
get-preferences (vlax-get-acad-object)) T).

(vlax-dump-object (vla-get-preferences (vlax-get-acad-object)) t)
; lAcadPreferences: This object specifies the current AutoCAD settings
; Property values:
Application (RO) = #<VLA-OBJECT IlAcadApplication 00a8a730>
Display (RO) = #<VLA-OBJECT IlAcadPreferencesDisplay 04c5df7c>
Drafting (RO) = #<VLA-OBJECT IAcadPreferencesDrafting 04c5df78>

126

Files (RO) = #<VLA-OBJECT lAcadPreferencesFiles 04c5df80>
OpenSave (RO) = #<VLA-OBJECT lAcadPreferencesOpenSave 04c5df84>
Output (RO) = #<VLA-OBJECT IAcadPreferencesOutput 04c5df88>
Profiles (RO) = #<VLA-OBJECT IAcadPreferencesProfiles 04c5df8c>
Selection (RO) = #<VLA-OBJECT lAcadPreferencesSelection 04c5df90>
System (RO) = #<VLA-OBJECT lAcadPreferencesSystem 04c5df94>

; User (RO) = #<VLA-OBJECT lAcadPreferencesUser 04c5df98>

; No methods

Figure 19-3 — Dump of the AcadPreferences collection object.

To go deeper, we’ll examine the Files collection to see what it contains...

(vlax-dump-object (vla-get-files (vla-get-preferences (vlax-get-acad-object))) T)
; lAcadPreferencesFiles: This object contains the options from the Files tab on
the Options dialog
; Property values:
; AltFontFile = "simplex.shx"
AltTabletMenuFile = "
Application (RO) = #<VLA-OBJECT lAcadApplication 00a8a730>
AutoSavePath = "C:\\TEMP\\"
ConfigFile (RO) = "C:\\Program Files\\AutoCAD 2002\\acad2002.cfg"
CustomDictionary = "C:\\Program Files\\AutoCAD 2002\\support\\sample.cus"
DefaultinternetURL = "http://amsecweb.amsec.com/cad/sw"
DriversPath = "C:\\Program Files\\AutoCAD 2002\\drv"*
FontFileMap = "C:\\Program Files\\AutoCAD 2002\\support\\acad.fmp"
HelpFilePath = "C:\\Program Files\\AutoCAD 2002\\help\\acad.chm"
LicenseServer (RO) = "
LogFilePath = "C:\\program files\\autocad 2002\\"

MainDictionary = "enu"
MenuFile = "C:\\Program Files\\AutoCAD 2002\\support\\acad"
ObjectARXPath = "

PostScriptPrologFile = "

PrinterConfigPath = "C:\\Program Files\\AutoCAD 2002\\plotters"

PrinterDescPath = "C: \\Program Files\\AutoCAD 2002\\drv*"*

PrlnterSterSheetPath "C:\\Program Files\\AutoCAD 2002\\Plot Styles"

PrintFile = "."

PrintSpoolerPath = "C:\\TEMP\\"

PrlntSpooIExecutable = "

SupportPath= "C:\\Program Files\\AutoCAD 2002\\support;C:\\Program
Flles\\AutoCAD 2002\\fonts;C:\\Program Files\\AutoCAD 2002\\help;C:\\Program
Flles\\AutOCAD 2002\\express
; TempFilePath = "C:\\TEMP\\"

TemplateDwgPath = *"C:\\Program Files\\AutoCAD 2002\\template™

TempXrefPath = "C:\\TEMP\\"

TextEditor = "Internal™

TextureMapPath = "C:\\Program Files\\AutoCAD 2002\\textures"
; WorkspacePath = "C:\\Program Files\\AutoCAD 2002\\Data Links"
; Methods supported:

GetProjectFilePath (1)

SetProjectFilePath (2)

Figure 19-4 — Dump of the Files collection object within AcadPreferences

Note that the Files collection has many Properties and only two methods available. Also,
you’ll notice here that the SupportPath setting shows the search path list as a single string
with semi-colon delimiters between each path value.

The most important understanding to come away from this is that you can use the (vla-
get-xxx) and (vla-put-xxx) functions to get and modify any properties shown
anywhere throughout the AcadPreferences collection objects as long as they are not read-
only (RO). Think about this for a few minutes and it should dawn on you that this
exposes an enormous amount of power and flexibility to you as the developer. You can
programmatically manipulate the AutoCAD configuration with very little effort. Taking

127

this farther, when you begin working with Profiles, you will find this opens up a whole
world of possibilities to manage desktops remotely in a networked environment.

Let’s demonstrate how this might be put to practical use with Visual LISP. Suppose you
want to modify all the AutoCAD installations on your network to change a default path
setting for where each client looks for Drawing Template files. Maybe you want them to
all use a standard set of customized templates stored in a folder on a shared server over
the network. To do this, you only need to push out a change to the TemplateDwgPath
property under the Files collection. Sure, you could do this using a profile (ARG file) or
a registry hack, but deploying those are difficult without some additional tools or some
scripting to help it work.

One solution is to push the update through AutoCAD using ActiveX with Visual LISP
coding and the AcadPreferences object interface. Figure 19-5 shows an example function
for doing just that and shows an example of how it might be used within a program
function. This could be deployed by using a hook from within the acaddoc.lsp
(s::startup) function that you could deploy to all clients once, and be able to deploy code
changes from then on with very little effort. The code in Figure 19-5 could be loaded
from the (s::startup) routine and fire off automatically after it loads on the client.

(defun UpdateTemplatePath (pathname)
(vla-put-TemplateDwgPath
(vla-get-Files
(vla-get-AcadPreferences
(vlax-get-acad-object)
D)
)

pathname

)

)
(UpdateTemplatePath “J:\\acad\\configs\\templates’)

Figure 19-5 — Updating the TemplateDwgPath property via the AcadPreferences/Files interface

You might want to embellish this code a little to make it more robust and flexible. For
example, you could add a check to make sure the existing path setting is not already
correct before changing it, saving unnecessary work at the start of every drawing session
on every client.

The DatabasePreferences Object

The DatabasePreferences object is a collection of preferences that apply to the active
document only. As stated previously, they appear in the OPTIONS dialog with a small
drawing icon symbol beside them to indicate this.

Below is a dump of the collection from a drawing session to show what items it contains:

Command: (setq dbprefs (vla-get-preferences activedocument))
Command: (vlax-dump-object dbprefs t)
; lAcadDatabasePreferences: This object specifies the current AutoCAD drawing
specific settings
; Property values:
AllowLongSymbolINames = -1
Application (RO) = #<VLA-OBJECT IAcadApplication 00a8a730>
ContourLinesPerSurface = 4

128

DisplaySilhouette = 0
Lineweight = -1
LineWeightDisplay = -1
MaxActiveViewports = 64
ObjectSortByPlotting = 0
ObjectSortByPSOutput = 0O
ObjectSortByRedraws = 0O
ObjectSortByRegens = 0
ObjectSortBySelection = -1
ObjectSortBySnap = -1
OLELaunch = 0
RenderSmoothness =
SegmentPerPolyline
SolidFill = -1
TextFrameDisplay = 0
XRefEdit = -1

; XRefLayerVisibility = -1

; No methods

Figure 19-6 — The DatabasePreferences collection object

o

-5
8

You’ll notice that there are no methods to this object. Just as with the AcadPreferences
object, you can access and manipulate these properties using the same approach with
VLISP. For example, to toggle Lineweight display on or off:

(vla-put-LineWeightDisplay activedoc :vlax-true);; turns LWT on
(vla-put-LineWeightDisplay activedoc :vlax-false);; turns LWT off

Reloading a Profile

AutoCAD R14.01 added a nice feature that allows you to specify a profile .ARG file in
the shortcut parameters using the /p start-up switch. However, AutoCAD will not allow
you to reload an .ARG file when the target profile name is already defined. AutoCAD
sees the name in the ARG file and sees an existing profile already defined and simply
points to the existing profile and ignores the ARG file. The only workarounds are to...

e Set the active profile to some other profile, and then delete the target profile.
Then import the ARG file to redefine the profile again.

e Rename the existing profile and import the ARG file to define the profile again.
e Import the ARG file such that it defines a new (unique) profile name.

Why would you want to be able to “force reload” a profile? Well, there is also another
undocumented “feature” of AutoCAD that affects network profile configurations in a bad
way. What happens is that if your profile includes network pathing settings, and the
network paths happen to be inaccessible at the point when a user launches AutoCAD with
that profile, AutoCAD handily strips out the pathing entirely and continues on.
Obviously, this is not good, especially since it will not add the pathing back in even when
the network is back on line and accessible.

So, now what? Well, since you have the means to access and manipulate the
AcadPreferences object through Visual LISP, you can easily work your way around this
under the hood. Check out the example code functions below.

129

;; Reloads a profile from an ARG Ffile
;:: Replaces existing profile if defined
;; Returns profile name if successful, otherwise returns nil

(defun Profile-Reload (name ARGname / bogus)
(cond
((and
(Profile-Exists-p name)
(Findfile ARGname)

(if (/= (strcase name) (strcase (vla-get-ActiveProfile (AcadProfiles))))
(Profile-Delete name)
(progn
(setq bogus '‘bogus™)
(Profile-Rename name bogus)

)

(Profile-Import name ARGnhame)
(vla-put-ActiveProfile (AcadProfiles) name)
(if bogus (Profile-Delete bogus))

name

~\

(and
(not (Profile-Exists-p name))
(findfile ARGname)

(Profile-Import name ARGnhame)
(vla-put-ActiveProfile (AcadProfiles) name)

name
)
((not (findfile ARGname))
(princ (strcat '"\nCannot locate ARG source: " ARGname)) nil
)
)

)

;5 ; Renames an existing profile
;i Returns new profile name if successful, otherwise returns nil

(defun Profile-Rename (from to / result)
(if (Profile-Exists-p from)
(if (not (Profile-Exists-p to))
(cond
((not
(vl-catch-all-error-p
(setq result
(vl-catch-all-apply
“‘vla-RenameProfile
(list (AcadProfiles) from to)

)
)

)

)
to ; Return new name if successful!
)
)

); end if

); end if

)

;5> Deletes an existing profile
;53 Returns T if successful, otherwise returns nil

130

(defun Profile-Delete (strName / result)
(if (Profile-Exists-p strName)
(cond
((not
(vl-catch-all-error-p
(setq result
(vl-catch-all-apply
“‘vla-DeleteProfile
(list (AcadProfiles) strName)

)
)
)
T ; return T for success!

)

)
): endif
)

Imports a profile from a given ARG file
;:: Returns profile name if successful, otherwise returns nil

(defun Profile-Import (argFile strName / result)
(cond
((Findfile argFile)
(cond
((not
(vl-catch-all-error-p
(setq result
(vl-catch-all-apply
“‘vla-ImportProfile
(list (AcadProfiles) strName argFile vlax-True)
)
)
)
)

strName ; return new profile name if successful!

;i Determine if profile name is already defined (exists)
;3 Returns T or nil

(defun Profile-Exists-p (nhame)
(get-item (AcadProfiles) name)
;; Return Profiles collection object

(defun AcadProfiles
(vla-get-profiles (vla-get-preferences (vlax-get-acad-object)))

Last but not least, here is a simple function to return a list of all defined profile names:

(defun Profiles-ListAll (/7 hold)
(vla-GetAllProfileNames (AcadProfiles) “hold)
(if hold (vlax-SafeArray->List hold))

)

131

Chapter 20 — Menus and Toolbars

Just as AutoCAD drawing entities are part of the AutoCAD object model, so are menus
and toolbars. Menus are organized into a root MenuGroup collection, containing one or
more MenuGroup objects. Each MenuGroup object in turn contains a collection of
“popmenus” (pull-down), and a collection of toolbars. You can add MenuGroups using
the (vla-load) method on the MenuGroups object. This performs the same task as
using the AutoCAD MENULOAD command.

The coolest thing about this is that you can add, modify and delete menu items and
configurations programmatically. This enables you to build menus with complete control
from within your VLISP programs. The only thing not exposed from the menugroups or
menubar objects is the screen menu from ancient days. For this you must resort to the
standard AutoLISP (menucmd) function to manipulate the screenmenu and the
AcadPreferences collection to control the display (toggle it on or off).

The MenuBar Object

The MenuBar object contains all of the currently displayed pulldown or “pop” menu
items in the AutoCAD session. It is a member of the AcadApplication object. If you
have stub menus loaded that have any pop menu groups spliced in with the AutoCAD
pop menus, the MenuBar object will return all of them in the order from left to right in
the collection.

(setq acadapp (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00a8a730>

(setq mbar (vla-get-menubar acadapp))

To access individual pop menus, use the Item method as follows:

(setq popmenul (get-item mbar 0))
#<VLA-OBJECT IAcadMenuBar 00e8ae24>

To see more menubar info, dump the object as follows:

Command: (vlax-dump-object mbar T)
; IAcadMenuBar: A collection of PopupMenu objects representing the
current
AutoCAD menu bar
; Property values:
Application (RO) = #<VLA-OBJECT IAcadApplication 00a8a730>
Count (RO) = 14
Parent (RO) = #<VLA-OBJECT IAcadApplication 00a8a730>
; Methods supported:
Item (1)

132

Getting MenuBar Items

To access a MenuBar item or check if a popmenu exists in the collection you can iterate
the collection. To check for a particular popmenu, search for a matching name value in
the MenuBar collection as follows:

(defun PopMenu-MenuBar-p (name / mbar i found)
(setq mbar (vla-get-menubar (vlax-get-acad-object)) i 0)
(while (and (not found) (< i (1- (vla-get-count mbar))))
(if (= (strcase name) (strcase (vla-get-name (get-item mbar 1))))
(setq found T)

)
(setqg 1 (1+ 1))
)

(vlax-release-object mbar)
found

)

If you know the name of the pop menu, you can access it directly using Item and the
name property in string form as follows:

(setq popmenu (get-item mbar “&File’))

’r Be aware that the name property includes the mnemonic character & as part of
the name string. If you try to fetch the menu simply by the logical name of “File”, the
(vla-item) method will fail to return it from the MenuBar object. This is true in general
for using the Item method with any collection where you are fetching by string name
values.

Inserting PopMenus into the MenuBar collection

To insert a popmenu of a loaded menugroup into the MenuBar collection, use the (vla-
InsertinMenuBar) method of the popmenu object itself.

(defun PopMenu-Insert (mgroup name loc / pmnu)
(if (not (PopMenu-MenuBar-p name))
(if (setq pmnu (PopupMenu mgroup name))
(progn
(vla-insertinmenubar pmnu loc)
(vlax-release-object pmnu)

T
)
(princ (strcat "\nMenugroup or popmenu not loaded: " name))
(princ (strcat '\nPopmenu already loaded: " name))

133

Removing PopMenus from the MenuBar collection

To remove a named popmenu from the MenuBar collection, use the (vla-
removefrommenubar) method of the popmenu object itself.

The MenuGroups Collection Object

AcadAnpplication

MenuGroups
—[MenuGroup]
— PopMenus
MenuBar
L—{ PopMenu]
— Toolbars

L——{ Toolbar]

The MenuGroups collection object contains all the menugroups found in the AutoCAD
session. Each menugroup is a source menu that has been loaded. Normally, you will see
the menugroup “Acad”, but you might also see “Express” for the Express Tools
menugroup if it has been installed.

Figure 20-1 — The MenuGroup collection object

(defun MenuGroups-ListAll (/ out)
(vlax-for each (vla-get-menugroups acadapp)
(setq out (cons (vla-get-name each) out))

out

)

To add a new menugroup to the menugroups collection, you use the Add or Load
methods and specify the appropriate arguments. To remove a menugroup, you must first
get the menugroup object and then invoke its Delete method.

The MenuGroup Object

The menugroup object contains all the popmenus and toolbars for a given menugroup. It
is a member of the MenuGroups collection object. To get the Acad menugroup, use the
following:

(setq mgroups (vla-get-menugroups acadapp))
#<VLA-OBJECT IAcadMenuGroups 01433208>

(setq mg-acad (get-item mgroups “Acad))
#<VLA-OBJECT I1AcadMenuGroup 00e9b38c>

134

The PopMenus Object

The PopMenus collection object contains all the popmenus, or pull-down menus, for a
given menugroup. To access the popmenus collection for the Acad menugroup, use the
following:

(setq pmnu (vla-get-popmenus mg-acad))

A dump of the popmenus object shows its properties and methods:

The PopMenu Object

The PopMenu object represents a single popmenu or pull-down menu. You can use the
PopMenu object to insert itself into the MenuBar object as well as to access its internal
objects, properties and methods.

The Toolbars Collection Object

The Toolbars object is a collection of all toolbars for a given menugroup. Use the (vla-
get-toolbars) method to access the root of this collection from the menugroup object. For
example, to get the Toolbars collection for the Acad menugroup, use the following:

(setq tbars (vla-get-toolbars mg-acad))
#<VLA-OBJECT IAcadToolbars 0OOefa7c4>

You may want return a list of all the toolbar names for a given toolbars collection. To do
this you simply need to iterate through the toolbars and return a list of their respective
Name property values...

(progn
(vlax-for each tbars
(setq out (cons (vla-get-name each) out))
)

(if out (reverse out))
)

The Toolbar Object

The Toolbar object represents a single toolbar and it buttons. The buttons are contained
as a collection which can be iterated using the (via-item) method, instead I’ll use the
(get-item) function suggested earlier. For example, to access the “Dimension” toolbar
object from the Acad menugroup, use the following:

(setq tbl (get-item tbars "Dimension'™))
#<VLA-OBJECT IAcadToolbar 00Oeb6a7c>

Command: (vlax-dump-object tbl T)

; lAcadToolbar: An AutoCAD toolbar

; Property values:
Application (RO) = #<VLA-OBJECT lAcadApplication 00a8a730>
Count (RO) = 22
DockStatus (RO) = 4

135

; FloatingRows = 1
; Height (RO) = 52

; HelpString = "Dimension Toolbar"
; LargeButtons (RO) = 0O

; left = 255

; Name = "Dimension"’

Parent (RO) = #<VLA-OBJECT IAcadToolbars OOefa7c4>
TagString (RO) = "ID_TbDimensi*
top = 218
Visible = -1
Width (RO) = 565
Methods supported:
AddSeparator (1)
AddToolbarButton (5)
Delete (O
Dock (1)
Float (3)
Item (1)

The following example functions demonstrate how to get the Toolbars collection from a
given menugroup object, and how to get a specified toolbar object by name from a
specified menugroup object.

(defun get-MenuGroups ()
(vla-get-menugroups (vlax-get-acad-object))

)

(defun get-MenuGroup (name)
(if (menugroup name)
(get-item (get-MenuGroups) name)

)
)
(defun get-Toolbars (mgroup / mg result)

(if (setg mg (get-MenuGroup mgroup))
(progn
(setq result (vla-get-Toolbars mg))
(vlax-release-object mg)

)

result

)

(defun get-Toolbar (mgroup name / tbs result)
(if (setqg tbs (get-Toolbars mgroup))
(progn
(setq result (get-item tbs name))
(vlax-release-object tbs)

)
)

result

)

The following example function docks a specified toolbar to the Left, Right, Top or
Bottom. If the side argument is not “LEFT”, “RIGHT”, “TOP” or “BOTTOM?” then it
defaults to “LEFT”. The argument is not case sensitive.

(defun Toolbar-Dock (mgroup name side / tb loc)

(cond
((= (strcase side) “LEFT”) (setqg loc acToolbarDockLeft))

136

((= (strcase side) “RIGHT”) (setq loc acToolbarDockRight))
((= (strcase side) “TOP™) (setq loc acToolbarDockTop))

((= (strcase side) “BOTTOM”)(setq loc acToolbarDockBottom))
(T (setqg loc acToolbarDockLeft))

f

(

)
Ci

(vla-Dock tb loc)
(vlax-release-object tb)

)
(princ (strcat '"\nToolbar (' name ") not found.'™))

)
)

The following example function floats a toolbar at a specified location (x and y offset
values from top-left of screen). The arguments are the menugroup name, the toolbar
name, y-coordinate, x-coordinate and toolbar row layout. The x and y coordinates are
from the top-left corner of the screen. This is a Windows standard practice for dialog
forms and toolbars. This function ignores toolbars that are hidden.

(defun Toolbar-Float (mgroup name top left rows)
(if (setq tb (get-Toolbar mgroup name))
(if (= (vla-get-Visible tb) :vlax-True)
(progn
(vla-Float tb top left rows)
(vlax-release-object tb)
1 ;; float and visible

-1 ;; toolbar not visible

)

0 ;; toolbar not found

)
)

Creating a Toolbar

Let’s assemble some code covered above and add some new ingredients to make a new
toolbar and assign a few buttons to it. In this case, we’ll add a new toolbar to the ACAD
menugroup and name it MYTOOLBAR. The first function adds a button object to a
toolbar object with some supplied property values. In this example, | use the same
bitmap property for both large and small icon bitmap properties.

(defun Toolbar-AddButton
(tb name macro bitmapl tagstring helpstring /7 newButton index)
(setq index (vla-get-Count tb))
(cond
((setq newButton
(vla-AddToolbarButton tb
(vlax-make-variant index vlax-vblnteger)
name helpstring macro

)

(vla-put-TagString newButton tagstring)
(vla-SetBitMaps newButton bitmapl bitmapl)
newButton

137

Now, we’ll see how to create a new toolbar and assign a new button to it. This function
will create a new toolbar named “MyToolbar” and add one button to it that invokes the

LINE command. Load the sample file Toolbars.Isp from the book CD samples and run
the function (toolbar-make) at the AutoCAD command prompt.

(defun Toolbar-Make (7/ tb)
(cond
((setq tb (vla-add (get-toolbars "acad'™) "MyToolbar™))
(if (Toolbar-AddButton tb
"Line"™ "™\003\003\020\nLine"
"ICON_16_LINE"™ "MyButton001" "Draws a line: LINE"

(alert "1 just added a button to my toolbar!'™)
(alert "Uh oh! ...™)
)

(vlax-release-object tb)
)
)
)

You can continue much further with this by tapping the other methods such as Add,
Delete and so on to build out your toolbars. You can also manipulate toolbar row
configurations, change button ordering and hide or display the toolbar. When you
combine this with your program code you can create some very sophisticated menu
management features.

1‘“’!

One very common request | get from instructors involves how to automatically
“reset” menu and toolbar configurations after students mess them up during a class.
Profiles are one way, but even profiles can be unreliable when it comes to menus,
because menus rely upon MNS and MNC files as well as the registry for their
configurations. The more reliable method is to combine the examples show above into a
comprehensive menu manager that steps through all the menu items and sets them to a
desired property setting (location, display, docking, etc.).

138

Chapter 21 — Interfacing with Other Applications

While Visual LISP is a bit more cumbersome to use for dealing with external applications
than VBA, it does have the capability to do some very powerful things. While it is very
common to use ObjectARX applications from within Visual LISP, such as DOSIib, it is
only a small taste of what more can be done. Some examples might be passing data
between AutoCAD and Microsoft Office applications, sending E-mail messages in the
background using CDONTS, and performing specialized desktop, file, folder and
network tasks using the Windows Scripting Host.

Microsoft Excel

The example code below shows how to initialize the Excel Type Library (for Excel 2000
or XP) and create a new Excel spreadsheet file in Excel from Visual LISP. Be careful of
one particular aspect of Visual LISP: TypeLib interfaces. Why would I say this? Well,
while VB and VBA give you the nice auto-complete feature called Intellisense®, Visual
LISP does not.

When working in VB or VBA and setting a reference to a component library, it takes
care of mapping the syntax awareness and pop-up help strings. Visual LISP does not.
Even though you may be familiar with Excel 2000 from a Visual LISP standpoint, don’t
assume everything is the same when it comes to Excel 10 (also called XP).

There’s not enough space to cover this in detail, but be assured that it’s well worth the
time to investigate changes anytime you intend to use your code with a newer version of
an external application.

(defun Excel-TypeLib-2000 (/ sysdrv officepath)
(setq sysdrv (getenv ''systemdrive'))
(setq officepath (strcat sysdrv “\\program files\\microsoft office\\office”))
(findfile (strcat officepath “\\excel9.0lb”))

)

(defun Excel-TypeLib-XP (/ sysdrv officepath)
(setq sysdrv (getenv “systemdrive’))
(setq officepath (strcat sysdrv “\\program files\\microsoft offices\\officel0))
(findfile (strcat officepath “\\excel.exe™))

)
(defun Excel-Load-TypeLib (/7 tlbfile tlbver out)
(cond
((null msxl-x124HourClock)
(if (setq tlbfile (Excel-TypelLib-2000))

(progn
(vlax-import-type-library
:tlb-filename tilbfile
:methods-prefix msxl-"*

:properties-prefix "msxI-"
cconstants-prefix ‘‘msxI-"

)
(if msxl-x124HourClock (setq out T))

D)
D)

)
(T (setqg out T))
out

(defun Excel-New-Spreadsheet (dmode / appsession result)

139

(princ "\nCreating new Excel Spreadsheet file...")
(cond
((vl-catch-all-error-p
(setq appsession
(vl-catch-all-apply
“vlax-create-object
*(""Excel .Application™)

)
)
)
(vl-exit-with-error
(strcat “Error: “ (vl-catch-all-error-message appsession))
)
)
(T
(princ "\nOpening Excel Spreadsheet file...")
(cond

((vl-catch-all-error-p
(setq result
(vl-catch-all-apply
“vlax-invoke-method

(list
(vlax-get-property appsession "Workbooks'™)
"Add™
)
)
D)
(princ (strcat "\nError: " (vl-catch-all-error-message result)))
)
T

(if (= (strcase dmode) *SHOW'™)
(vla-put-Visible appsession 1)
(vla-put-Visible appsession 0)

)

)
)
)
)

appsession

You should pay special attention to the section in the () function above that defines the
type library interfaces. This is not very clearly documented actually, but the string
prefixes assigned to the properties, methods and constants is arbitrary. In this example, |
used the same value for all three, but other examples you’ll find will use unique prefixes
such as msxp- msxm- and msxc- to differentiate each of the types of interface objects.

(vlax-import-type-library
tlb-filename tibfile
-methods-prefix "msx1-""
sproperties-prefix "msxI-"
:constants-prefix “msxIl-"

)

Theoretically, you could also forego assigning a prefix by using “” for each property in
the declaration expression above. But doing so will make it difficult to work with
multiple application type library interfaces, such as Word and Excel, that might be used
within the same Visual LISP code. Yes, you can define and use as many type library
interfaces as you need to do the job. It’s usually better to modularize your Visual LISP
code to avoid this if possible, and keep each type library reference isolated. Debugging
and testing will be much easier to manage by keeping things orderly and organized.

140

[]
There is a known defect in AutoCAD 2000-2002 when releasing objects created
using (vlax-get-or-create-object) as well as (vlax-create-object) whereby the
external process is not terminated when the object is released.

You can verify this by using the Windows Task Manager and watching the Processes list
for a given application. For example, if you open a session of Excel 10 (part of Office
XP) and call the Quit method of the Excel.Application object, you would expect that after
you release the object in VLISP that the process would terminate, but it usually will not.
The following example code can be used to test this on your computer:

(defun excel-test (/ xlapp)
(cond
((setq xlapp (vlax-create-object “Excel .Application™))
(vlax-put-property xlapp “Visible” T); show Excel
(vlax-invoke-method xlapp “Quit”); close Excel
(vlax-release-object xlapp); release object
(gc); force garbage collection

(T (princ “\nUnable to open Microsoft Excel.”))

)

Load the above code into the VLIDE edit window and load it into AutoCAD. Open the
Windows Task Manager and pick the Processes list tab. Go back to AutoCAD and run
the function (excel-test) and watch the Task Manager process list for Excel.exe to appear
in the list.

Proper behavour would be that the Excel.exe process would appear and then disappear,
which it may do in your case. But in the majority of cases it will not disappear. The
problem this creates is if you attempt to reopen a given spreadsheet and the Excel process
has not let go of it. The spreadsheet file may often be opened in Read-Only mode since it
thinks someone else has the file already opened.

Autodesk suggests using (gc) after releasing such objects to force a termination, however,
(gc) simply places a call to the garbage collection service on a stack which is managed by
the Windows resource services. In other words, regardless of how you try to terminate
the session from VLISP, it may often not terminate at all. Be careful when manually
terminating the process using Task Manager as it can often break the RPC channel to
AutoCAD and make subsequent calls to Excel fail with errors.

Windows Scripting Host

Microsoft’s Windows Scripting Host (WSH) is a powerful, yet often overlooked free
service available as part of Windows 98/ME/2000/XP operating systems. It is also
available for free download to install on Windows 95 and NT 4.0 systems. Basically,
WSH is a script engine that runs scripts either from a command line interface or from a
GUI interface. The command line interface command is CSCRIPT, while the GUI

141

interface command is WSCRIPT. You can view the available runtime options by typing
CSCRIPT /?, 0r WSCRIPT /2 at the Windows Command Shell (DOS Window).

The example below demonstrates how to use the WSH Shell object to create shortcuts in
the Favorites collection. You can also access the Desktop and Start Menu shortcuts
repositories, for both the current user and the AllUsers group profiles (depending upon
the local rights of the current user).

(defun AddFavoritesShortcut
(target title / oWsh spfolders favorites shortcut)
(cond
((setq oWsh (vlax-create-object "WScript.Shell™))
(setq spfolders (vlax-get-property oWsh "SpecialFolders™)
favorites (vla-item spfolders "Favorites'™)
shortcut (vlax-invoke-method oWsh
“CreateShortcut”
(strcat favorites “\\” title “_Ink™)
)
)
(vlax-put-property shortcut "TargetPath” target)
(vlax-invoke-method shortcut ''Save')
(vlax-release-object oWsh)
(gc);; forced garbage collection after object release
(princ "\nShortcut created in Favorites...")

)
(T (alert "Failed to obtain shortcut class object..."))
)

)
(defun C:FAV (/ target name)
(setq target (getstring “\nURL for Favorite shortcut: “)
name (getstring t “\nName for Favorite: “)

(AddFavoriteShortcut target name)
(princ)
)

Figure 22-1 — Using WSH to add a Favorites shortcut link
The FileSystem Object

The FileSystem object is a powerful tool for interfacing with, and manipulating files, and
folders through the Windows operating system. For example, we can use it to iterate all
drive mappings and return a list of drive mappings.

(defun ListDriveMappings (/ fso drive drives Ist pth grp)
(setq fso (vlax-Create-Object "'Scripting.FileSystemObject'))
(vlax-for drive (setq drives (vlax-get-Property fso "Drives"))
(setq Itr (strcat (vlax-get-property drive "DrivelLetter'™) ":')
pth (vlax-get-property drive "ShareName')
grp (cons Itr pth)
Ist (cons grp Ist)
)
)
(vlax-Release-Object drives)
(vlax-Release-Object fso)
(reverse Ist)

)

Figure 22-2 — Using the FileSystem object to list drive mapping properties

142

The above function returns a list of drive mappings in paired sub-lists such as ((“C:” . “”)
D7) (“F . “\\Wserver\\share”) ...). This can be useful for building lists and for
validating a users’ configuration to support your application drive mapping needs.

We can also use the FileSystem object to see if a particular UNC path is mapped as a
drive letter, and if so, return the actual drive letter.

(defun get-MappedShare (share / fso drives drive letter)
(setq fso (vlax-create-object *"'Scripting.FileSystemObject™))
(vlax-for drive (setq drives (vlax-get-property fso “Drives™))
Gf
(:
(strcase (vlax-get-property drive "ShareName'))
(strcase share)

(setq letter (strcat (vlax-get-property drive 'DrivelLetter'™) ":"))

)
(vlax-release-object drives)
(vlax-release-object fso)
letter

)

Figure 22-3 — Using the FileSystem object to resolve a UNC path to a drive letter mapping

Using the above example, you can resolve UNC paths to actual drive letters if they have
been mapped by the current user. The syntax is as follows:

(get-MappedShare “\\\\myserver\\myshare) could return “F:”

The FileSystem object provides many other methods and accesses to various object
properties. For instance, you can copy, rename and delete files and folders. You can
even use it to copy a file directly to a named port, such as when performing direct-port
printing with plot files:

(defun CopyFileToLPT1 (Filename / file fso)
(setq fso (vlax-create-object *"'Scripting.FileSystemObject™))
(setq file (vlax-invoke-method fso "GetFile" filename))
(vlax-invoke-method file "Copy"™ "LPT1"™)
(vlax-release-object file)
(vlax-release-object fso)

)

Figure 22-4 — Using the FileSystem object to copy a file to the LPT1 port

Windows Messaging and CDONTS

CDONTS is an API provided by Microsoft Windows that enables applications to perform
various messaging functions programmatically. A subset of CDO, collaboration data
objects, CDONTS is a stripped-down, but very useful collection of functions, properties
and methods which can be derived from and used to create, and send messages with
various options.

143

Using an example from an Active Server Page (ASP) script, you can see how wecan
create an instance of a CDONTS object and use it to send a message directly from the
web server. This requires that the web server also has SMTP mail services running.

<%

Set objMail=CreateObject("'CDONTS.NewMail')
objmail .From=""davids@dsxcad.com"

objmail .To=""davids@dsxcad.com"
objmail.Subject="CDONTS Email Test Message"
objmail.Body="1 love your book!”
objmail.Send

Set objMail=Nothing

%>

Figure 21-3 — ASP CDONTS example code.

The code in Figure 21-3 performs a simple email send from within an ASP web page
when loaded and run from a Microsoft IS web server. Ignoring the syntax and specifics
of ASP code, you should be able to see that the first thing you do is create an object
instance of the CDONTS.NewMail class to use for making and sending your email
message.

To do this in a Visual LISP environment, you would use something like the translated
code in Figure 21-4.

;> No error checking provided!

(defun SendMail (7/ cdoMail)
(cond
((setq cdoMail (vlax-create-object ""CDONTS.NewMail'™))
(vlax-put-property cdoMail "From “davids@dsxcad.com’™)
(vlax-put-property cdoMail "To ‘“davids@dsxcad.com’)
(vlax-put-property cdoMail "Subject “CDONTS Test Message™)
(vlax-put-property cdoMail "Body “l love your book!’”)
(vlax-put-property cdoMail "Importance 1)
(vlax-invoke-method cdoMail "Send)
(vlax-release-object cdoMail)
(setq cdoMail nil)
)
)
(princ)

Alternate Code Example:

(defun SendMail (propslist / cdoMail)
(cond
((setq cdoMail (vlax-create-object “CDONTS.NewMail’))
(foreach propset propslist
(if (vlax-property-available-p cdoMail (car propset))
(vlax-put-property cdoMail (car propset) (cadr propset))

)

(vlax-invoke-method cdoMail “Send)
(vlax-release-object cdoMail)
(setq cdoMail nil)

144

)

(setq mailprops (list “(“From” “davids@dsxcad.com”) “(“To”
“davids@dsxcad.com”) “(“Subject” “Test Message”) “(“Body” “Test message
body’) “(*“Importance” 1)))

(SendMail mailprops)

Figure 21-4 — Visual LISP CDONTS example code

The code example in Figure 21-4 does not use any TypeL.ib interfaces, which is why the
Importance property is assigned an integer value instead of something more intuitive like
cdo-Normal.

The first line requests an object to be created from the CDONTS.NewMail class. Once
that succeeds, the object is assigned properties for the From, To, Subject, Body and
Importance values. Then the Send method is called to release the message. Finally, the
object is released and set to nil to clear it from memory.

If you are familiar with the CDO class object, you might want to consider using it instead
of CDONTS, as it provides much more granularity and flexibility.

Windows Management Instrumentation (WMI)

The Microsoft Windows Management Instrumentation (WMI) service is an abstraction
layer that provides programmatic interfacing with system resource data. This includes
hardware and software but also includes security and security context features. For a
quick example of what WMI enables, open the Computer Management utility in
Windows 2000 or Windows XP. Just about everything you can find in that collection of
information is exposed by the WMI interfaces. WMI is accessible by any ActiveX
programming language, including Visual LISP.

Invoking WMI from within Visual LISP is painful stuff. This doesn’t mean that you
can’t make use of its mighty power from VLISP though. One very painless route is to
invoke WMI operations from something that is built to handle them: VBScript. This
makes it possible to place the code into a VBS file and execute it using WSH via the
CSCRIPT command. Remember what | said earlier about using the right tools for all
jobs?

Let’s start by building a WMI script in VBScript named ClearLogs.VBS. This script will
clear all the local event logs and display a success or failure message at the end. Be
careful if you enter this code manually in an editor! Not only are the property names
rather long, but the wrapping caused by this printing produces incorrect results. Refer to
the sample files included with this book to get the source code for this and other code
shown throughout this book. The symbol = indicates a word-wrap that should not be
used when coding, but was required due to book formatting limitations.

Dim LogFileSetl, LogFileSet2, LogFileSet3, LogFile, RetVal, strinfo
strinfo = "

Set LogFileSetl = »

145

GetObject("winmgmts:{impersonationLevel=impersonate, (Backup)}'") .ExecQuery("'SELECT * FROM
Win32_NTEventLogFile WHERE LogfileName="Application®")

For each Logfile in LogFileSetl
RetvVal = LogFile.ClearEventlog()
IT Retval = 0 Then
strinfo = strinfo & ""The Application Log Has Been Cleared"” & vbCrLf
End If
Next

set LogFileSet2 = ®
GetObject("winmgmts:{impersonationLevel=impersonate, (Backup)}') .ExecQuery("*'SELECT * FROM
Win32_NTEventLogFile WHERE LogfileName="System™")

For each Logfile in LogFileSet2
RetVal = LogFile.ClearEventlog()

IT Retval = 0 Then
strinfo = strinfo & "The System Log Has Been Cleared" & vbCrLf
End If
Next

set LogFileSet3 = ®
GetObject("winmgmts:{impersonationLevel=impersonate, (Backup)}'") .ExecQuery("*'SELECT * FROM
Win32_NTEventLogFile WHERE LogfileName="System®')

For each Logfile in LogFileSet3
RetVal = LogFile.ClearEventlog()
IT Retval = 0 Then
strinfo = strinfo & "The Security Log Has Been Cleared”
End If
Next
MsgBox strinfo, , "Event Log Status"

Now, to call this script from Visual LISP open a shell process and execute a concatenated
request using CSCRIPT.

(setq scriptfile “c:\\myscripts\\clearlogs.vbs™)
(startapp (strcat “CSCRIPT.EXE //nologo “ scriptfile))

This example only barely covers WSH and WMI capabilities. You can combine such
powerful features as Remote Scripting, Network Scripting and WMI to perform some
incredible feats of daring that no manager could resist rewarding you with lavish pay
increases and stock options. OK, so that’s going a bit far, but trust me, when you start
combining Visual LISP with other language tools and interfaces, there’s no end in sight.

For more information on scripting using Microsoft VBScript or the Windows Scripting
Host, check out http://www.microsoft.com/scripting , as well as great web sites like
http://www.swynk.com , http://www.adminscripts.net and http://www.15seconds.com .

Working with Services

.fil”

When invoking Windows services, you normally use the GetObject method
(vlax-get-object) with the explicit prog-id identifier. One problem exists in that Visual
LISP cannot invoke certain services using this interface. Examples include the

LanmanServer service, and Windows Management Instrumentation (WMI) mentioned
above.

146

The only available workaround at the time of this publication is to call an external script
or executable, or provide a “wrapper”, or intermediate component to perform the desired
operations and return the results to VLISP in a variant form. You can develop wrapper
DLL’s for almost any exposed service using Visual Basic and invoke that DLL from
Visual LISP or VBA and do whatever you need to do.

147

Chapter 22 —Using Visual Basic DLLs with Visual LISP

Now that you’ve seen how to use interfaces to other applications, it’s time to consider
making your own custom tools. More accurately, this involves developing your own
services as components that can be referenced by Visual LISP (or other ActiveX
language options like VB or VBA). For example, you can develop your own ActiveX
controls or DLLs and use them from Visual LISP. This opens up an unlimited potential
for creating efficient pathways to other resources from within Visual LISP.

One such example might be to define a set of database interface routines that execute
stored procedures and returns them as a list to your Visual LISP application. Then the
DLL can take care of the ADO connections and doing the commands and recordset
management itself. This frees you from having to worry about doing this in Visual LISP,
which although can be done, it is much more tedious to do than with more suitable
languages like Visual Basic or Delphi. Conversely, the use of a VLX application
function library allows you to provide a similar purpose for other LISP or Visual LISP
applications. Huh? Yes, you can wrap DLL functionality within VLX applications so
that even your calls to your DLL’s remain private and protected.

As an example, we’ll create an ActiveX DLL that performs a simple function of
concatenating strings and returning a combined string result. This will involve using
Microsoft Visual Basic 6.0 and a new ActiveX DLL project (see Figure 22-1 below).

New Projeck I

icrosoft _ Say

h i
Mew |E:-:isting| Recent |

D 2

Standard EXE Activelk EXE

DN

Ackiver Y& Application

Conkrol \wizard
- % % 5 b
SN S S B
T —
YB YWizard Ackivey Activex Addin [rata Project

Manager Document D Document Exe

P=a P 4 P 4
Open

Cancel

Pl

Help

[~ Don't show this dislog in the future

Figure 22-1 — The Microsoft Visual Basic 6.0 New Project form.

148

Once you pick the Open button, the Visual Basic 6.0 development environment will open
and a default code window will be displayed. Change the name of the default project
from Projectl to vbStringClass, and change the name of the default class module from
Classl to vbStrings. Then, enter the code shown in Figure 22-2 in the code window to
define three distinct Public Functions. A public function is one that can be exposed to
any ActiveX consumer when the vbStringClass class is loaded.

&4, wbStringClass - vbStrings {Code) Hi=] E3
I(General} j IStrREu j

Public Function StrConcat (strl ks String, sStrZ As String) As Variant |
Scrfoncat = strl & strz |
End Function

Public Function S3trRewvi(str As 3tring) As Variant
JtrRev = ZtrBeverse(str)
End Function

Public Function 3trVer () Ls Variant —
StrWer = "1.00

End Function
-

SEd | 1

Figure 22-2 — Creating a public function in the class module code window.

Once you have entered the code to define the class function, save the class module as
vbStrCat.cls and the project itself as vbStringClass.vbp. Then pick the File pulldown
menu and select the Make vbStringClass.DLL option. Pick the OK button on the form
that appears and Visual Basic will compile your class module into a DLL and register it
on the local operating system. This DLL is now ready for use by any other program, be it
Visual LISP, Visual Basic, C/C++, Delphi, ASP or whatever. The next step is to load
this DLL using its TypeL.ib interface within Visual LISP and try it out.

1‘ You should avoid using the variable/symbol name “acad” in your program code.

Some third-party VLX applications will apply symbol protection to this name and it may
cause you to experience an error message when you try to use that name in your code.

Open the Visual LISP editor, create a new code window and enter the following code,
with these three distinct LISP functions.

(vIl-load-com)
(defun vbStrCat (stringl string2 / $acad vbstrcls out)
(setq $acad (vlax-get-acad-object))
(setq vbstrcls
(vla-GetlnterfaceObject $acad "vbStringClass.vbStrings')

(setq out (vlax-invoke-method vbstrcls "StrConcat” stringl string2))
(vlax-release-object vbstrcls)

(vlax-release-object $acad)

out

149

D

(defun vbStrRev (string / $acad vbstrcls out)
(setq $acad (vlax-get-acad-object))
(setq vbstrcls
(vla-GetlnterfaceObject $acad "vbStringClass.vbStrings')

(setq out (vlax-invoke-method vbstrcls "StrReverse' string))
(vlax-release-object vbstrcls)

(vlax-release-object $acad)

out

)

(defun vbStrVer (/ $acad vbstrcls out)
(setq $acad (vlax-get-acad-object))
(setq vbstrcls (vla-GetlnterfaceObject $acad
"vbStringClass.vbStrings'™))
(setq out (vlax-invoke-method vbstrcls *'StrVer™))
(vlax-release-object vbstrcls)
(vlax-release-object $acad)
out

)
Figure 22-3 — Visual LISP code to implement the DLL class functions.

Each (defun) function uses the AcadApplication object method “GetlnterfaceObject” to
fetch your registered DLL from the operating system and expose the class functions
within your Visual LISP code. Notice how the objects are explicitly released before
returning result values.

1‘ When working with Visual Basic, it is important to be careful about defining
Functions as opposed to Sub routines. Functions can return values, Subs cannot. Also, if
you fail to use the Function=Result return at the end of a given function, the return will
be nil to your LISP expressions. You might expect an ActiveX error to be generated, but
this is not the case. Also, you must define the return data type as a Variant for all
Functions in order to use them with VLISP. If you retrun some other data type, it will
cause an ActiveX error in your LISP code because it expects a Variant data type.

Now, load this Visual LISP code into AutoCAD and test it by entering these function
examples following at the AutoCAD command prompt:

Command: (vbStrCat “THE ” “D0G’)

This should return something like the following result:

Initializing VBA System.. “THE DOG”
Command: (vbStrRev “THE DOG BARKED’) returns “DEKRAB GOD EHT”
Command: (vbStrVer) returns “1.00”"

This is a very simple example and is only intended to demonstrate that you can develop
components in other language tools and use them from Visual LISP and other language

150

environments to get the job done. Note that the first time you reference an imported
function like this; you will see a notice saying “Initializing VBA System...” just before
the result is returned. This is because AutoCAD uses the VBA system services to interact
with ActiveX DLL components that involve certain ActiveX functions. After the first
invocation in a given drawing session, you will not see that message again, only the
return value.

Registering DLLs

If you plan to use this approach, you need to be aware of how DLL components are used
and how to register them on a given computer. When you compile an ActiveX DLL in
Visual Basic, it handles this chore for you on your local machine. But other users on
other machines will have to register the DLL another way before it can be used on their
machine. The Windows REGSVR32 command is used to manually register DLL
components a given machine. The syntax is REGSVR32 filename.dll where filename.dll
is the full path and filename to where the DLL resides (it can be local or on a network
share).

For example, if you were to deploy this DLL we created above on another machine, and
you had copied the vbStringClass.DLL file to a network folder named
G:\acadsupport\components\vbStringClass.DLL you would use the following command
on each client computer:

C:\>REGSVR32 G:\ACADSUPPORT\COMPONENTS\VBSTRINGCLASS.DLL

This can be done from any command prompt (on that local machine), or through a
SHELL operation from within AutoCAD (again, on that local machine), or
programmatically within Visual LISP using some code to check for the registration and
taking care of registering the DLL if it hasn’t already been registered on the machine.

Re-Registering DLLs

Whenever you release an updated version of your custom DLL it will also receive a new
GUID identifier. This lets other applications know what specific version of your DLL
they are using. In order to update a DLL on another machine, you must first un-register it
using REGSVR32 /U and then re-register it using REGSVR32 to install the newer
version and register the new GUID. The function shown in figure 14-1
(dllunregister) can be used from within VLISP to unregister a known DLL. Then
you can use the (dllregister) function to register a newer version.

This type of approach is very common and forms the basis of how many web
development environments work. One example is with ASP web programming and the
use of MTS (Microsoft Transaction Server) with Visual Basic DLLs. The ASP code can
invoke the DLL just as we can do with Visual LISP, in order to hand off complex
processing tasks to a dedicated component, which in turn returns the result to ASP for use
within rendering a web page to the user. DLL libraries provide their functionality to all
ActiveX languages at once. So when you create a new DLL, remember that it can

151

normally be used by VLISP, VBA, VB, C/C++, C#, Delphi, Java, ActivePerl, WSH and
many more languages.

Finally, if you do decide to pursue creating custom DLL components, you should
seriously consider using the Class Builder Wizard add-in for Visual Basic 6.0. This
handy utility helps you define a new class and develop an object model for your own
DLL classes. This opens up yet greater possibilities to you as well as other programmers
using other ActiveX-enabled languages in your organization.

{iP!

Now, would be a good time to start taking your VB programming buddies out to
lunch and buying them a beer or two. While it’s cool to learn other programming
languages, it’s even cooler to form partnerships or teams where each member can
contribute a unique skill set to help solve complex tasks in creative ways. Most
experienced VB programmers, like programmers of all language tools, have built
libraries of powerful gadgets that could unlock enormous potential for you as an
AutoCAD developer. While you’re out scouting for talent, don’t forget the folks the
work with other powerful tools like Delphi, C++, Scripting, SQL, Java, XML, and even
web developers.

152

Chapter 23 — Working with Dialog Forms

Since Visual LISP hasn’t added anything new to the world of DCL interfacing from
LISP, this chapter will instead focus on how DCL can be used within VLX applications.
There are quite a few methods for dealing with callbacks from dialog forms. | am not
going to preach any particular method to you. The methods shown herein are only my
own habitual ways of working with DCL callbacks. If you have other preferences, please
continue on your merry way unless you feel like changing habits now.

Referencing DCL Definitions

In the old days of AutoLISP, you had two files for any application that used a dialog
form. You had the LSP file and the DCL file, and both had to be present and available to
the user at runtime to execute the application successfully. With the new VLISP
Application features, you can now compile the LSP and DCL source code files into a
single VLX application file to provide to your users. This not only protects your source
code somewhat, but it makes for easier deployment and maintenance, especially in a
networked or distributed environment.

For example, in AutoLISP you might setup a LSP application to access the DCL source
as follows (again, your style may be different. This is for example only):

(cond
((setq dcfl (Findfile “mydialog.dcl™))
(setq dcid (load_dialog dcfl))
(cond
((new_dialog “myform” dcid)
...do something with dialog callbacks here. ..
(action_tile “accept” “(done_dialog 1))
(action_tile “cancel” “(done_dialog 0)”)
(start_dialog dlgstatus)
(unload_dialog dcid)
))
)
)
(T (princ ‘“\nUnable to locate DCL form file!””))

)

You can still use this “legacy” code with only very minor changes to enable it to be
compiled into a Visual LISP VLX application file. Simply remove the check for the file
location and assume it is always there (because, when you compile it into the VLX it will
be). You would only need to check for the form loading itself, which is already being
done in the original code.

(setq dcid (load_dialog “mydialog™))
(cond
((new_dialog “myform” dcid)
...leave the rest as-is...
)
)

153

As you can see, it also shortens your code a bit. You can use this to help guide you in
porting your older AutoLISP dialog form applications into Visual LISP VLX applications
by referring to chapter 13 for how to build VLX applications.

Dynamic Dialog Interaction

A very common feature requirement in dialog-based applications is the need to have form
features dynamically change in response to user interaction. Such things as changing an
image or edit box values based upon selections in other parts of the form. Probably the
most common is the need to enable or disable features based upon user selections.

The following example will step through how to make a dialog form that enables or
disables certain features based upon selections in another part of the form. First, we’ll
show the example dialog form definition:

myform : dialog {
label = “My Dialog Form”;
s row {
: boxed_radio_column {
key = “viewpoint”;
label = “ViewPoint Options”;
: radio_button {key “TOP”’; label = “Top”; }
: radio_button {key = “SIDE”; label = “Side”; }
: radio_button {key “FRONT”; label = “Front”; }
}
= boxed_column {
label = “Other Options”;
: edit_box {key “TOP2””; label = “Top Scale”; edit width = 6; }
: edit_box {key = “SIDE2”; label = “Side Scale”; edit_width = 6; }
: edit_box {key “FRONT2”; label = “Front Scale”; edit width = 6; }
}
}

ok_cancel;

}

Now, we’ll see how to enable only one of the edit-boxes at a time, with respect to which
of the radio-buttons are selected on the left-hand side of the form. To do this, we’ll
define a few functions. The first will handle the dialog form and the call-backs using an
(action_tile) call-back for the radio_column “viewpoint”, which will receive the key-
name of the radio button selection within its collection. Then we can use that key name
to perform a conditional action using the other two functions to manipulate the other tiles.

(defun C:Myform (/ *error* dcid ok choice)
(defun *error* (s)
(princ (strcat "\nError: " s))
(vi-bt)
(princ)
) i i i
(setq dcid (load_dialog "mydialog™))

(if (null $MYFORM1) (setq $MYFORM1 ""TOP™))
(cond

154

((new_dialog "myform" dcid)
(set_tile "viewpoint” $MYFORM1)
(change-form $MYFORM1)
(action_tile "viewpoint™ "(setq choice (change-form $value))'™)
(action_tile "accept” "(setq ok 1)(done_dialog)'™)
(action_tile "cancel" "(setq ok 0)(done_dialog)'™)
(start_dialog)
(unload_dialog dcid)
(if (= 0k 1)
(if choice (setq $MYFORM1 choice))
)

)

(T (princ "\nUnable to load form from dialog definition."))
)
(princ)

(defun change-form (val)
(cond
C (= val "TOP™)
(mode-tiles " ('TOP2') 0)
(mode-tiles "('SIDE2" "FRONT2'™) 1)

((= val "SIDE™)
(mode-tiles " ('SIDE2"™) 0)
(mode-tiles "("'TOP2" "FRONT2'") 1)

~\A

(= val "FRONT™)
(mode-tiles "('FRONT2'™) 0)
(mode-tiles " ('TOP2'" "'SIDE2"™) 1)

val

(defun mode-tiles (tiles mode)
(foreach tile tiles (mode_tile tile mode))

)

My Dialog Form

Other ﬁplio. 1

X

@« Side
= Front

iewPoint Option
|’ i Top

|

Tiop Scale
Side Scale

Front Scale

L]
L]
]

Cancel

Now simply follow the steps in Chapter 13 to compile
both of these source files into a single VLX application
file and load it into your AutoCAD session. Type in
MYFORM to run the command and see how the edit
boxes react when you select the radio buttons.

Your dialog display should look something like

this example image if you compile and load it correctly.

Controlling Images From Call-Backs

Now that we’ve seen how to enable and disable tiles from call-back values, let’s try going
a tiny step farther and use this to change the slide image in a dialog form image tile. To
demonstrate this, you should load the sample code slide files into a common folder and
make sure the folder is in your default search path. Once we compile the VLX

155

application and load it, it will still need to find the .SLD files used for the image tile
display. Unfortunately, VLISP doesn’t provide a means to compile slide files into the
VLX as it does for DCL, DVB, INI and LSP files.

Let’s take the dialog form defined above and modify it slightly to add a single image_tile:

myform : dialog {
label = “My Dialog Form”;
crow {
- boxed_column {
label = “Preview”;
: image_button {
key = “image”;
height = 10;
aspect_ratio = 1.25;
color = 0;
fixed_height = true;
fixed_width = true;
}

: boxed_radio_column {
key = “viewpoint”;
label = “ViewPoint Options”;
: radio_button {key = “TOP”; label = “Top”; }
: radio_button {key = “SIDE”; label = “Side”; }
: radio_button {key = “FRONT”; label = “Front”; }

: boxed_column {
label = “Other Options”;
: edit_box {key

= “TOP2”; label = “Top Scale”; edit_width = 6; }
: edit_box {key = “SIDE2”; label = “Side Scale”; edit _width = 6; }
: edit_box {key = “FRONT2”; label = “Front Scale”; edit_width = 6; }
¥
b
ok _cancel;

}

In order to properly control the image_tile, we should define a special function that takes
care of finding the image file and adjusting scaling to suit the DCL configuration. You
can load this example from MyDialog2.LSP in the sample files collection for this book.
If you look closely, you’ll notice that this function accepts either a SLD or SLB (slide-
library) file, thereby making it possible to bundle your slides into a SLB and keep the
total deployment down to just the VLX and SLB files.

(defun slide-show
(tile sld slb /7 w ky xc yc sldnam)
(cond
C (or
(and slb (findfile slb))
(findfile sld)

)
(setq
xc (dimx_tile tile)
yc (dimy_tile tile)
)

(start_image tile)

156

(fill_image 0 0 xc yc 0)
(if slb

(progn
(setq slb (vl-filename-base slb))
(setq sldnam (strcat slb (" sld "™)"))

)
(setq sldnam sld)

(slide_image 0 0 xc yc sldnam)
(end_image)

)
(T (alert "Slide image file not found..."))

)
)

Assuming that you use the provided slide files TOP.SLD, SIDE.SLD and FRONT.SLD
and place them in a folder that is in the current default search path, you should be able to
compile and load the MYDIALOG2.VLX and run it successfully.

157

Chapter 24 — Examples of Common Tasks

This chapter will suggest some ideas for solving common tasks that combine aspects of
previous chapters. You may find some of these useful, maybe not. In any case, they are
provided simply to demonstrate how VLISP can be used to do things AutoLISP alone is
not capable of doing.

Example 1 — Dumping a List of Layer Properties

This example involves the task of producing an HTML report of all layers in the current
drawing, including their properties (color, linetype, etc.) and opening the report in a web
browser after completion. When loaded, the command is DUMPLAYERS.

(defun C:DUMPLAYERS
(/ acadapp doc dwg layers name col Itp lwt pst onoff frz dat
path olist outfile output)
(vI-load-com)
(setq acadapp (vlax-get-acad-object)
doc (vla-get-activedocument acadapp)
dwg (vla-get-name doc)
path (vla-get-path doc)
layers (vla-get-layers doc)
)
(vlax-for each layers
(setq name (vla-get-name each)
col (itoa (dsx-get-color each));; see Chapter 25!
Itp (vla-get-linetype each)
Iwt (itoa (vla-get-lineweight each))
pst (vla-get-plotstylename each)
onoff (if (= :vlax-True (vla-get-layeron each))
“ON” ““OFF”

frz (if (= :vlax-True (vla-get-freeze each))
“FROZEN” ““THAWED”

dat (list name col Itp Ilwt pst onoff frz)
olist (cons dat olist)

): viax-for

(vlax-release-object layers)
(vlax-release-object doc)
(vlax-release-object acadapp)

(cond
(olist
(setq outfile (strcat (vI-filename-base dwg) “.htm™))
(setq outfile (strcat path outfile))
(cond
((setq output (open outfile “w’))
(write-line “<html>" output)
(write-line “<head><title>" output)
(write-line (strcat “Layer Dump: “ dwg) output)
(write-line “</title></head><body>" output)
(write-line (strcat “Drawing: “ dwg “
"") output)
(write-line “<table border=1>" output)
(foreach layset olist

158

(write-line “<tr>" output)
(foreach prop layset
(write-line (strcat “<td>" prop “</td>") output)

(write-line “</tr>" output)

); foreach layer set
(write-line “</table></body></html>" output)
(close output)
(setq output nil)
(princ “\nReport finished! Opening in browser...”)
(vl-cmdf “__browser” outfile)

)

(T (princ “\nUnable to open output Ffile.”))

)

)
(T (princ ‘“\nUnable to get layer table information.”))

)
Example 2 — Set All Entities to “ByLayer”

This example involves the task of assigning all entities in the current working space to
“ByLayer” with respect to Color, Linetype, and Lineweight properties.

(defun C:BYLAYER
(/ acadapp doc ssall i1 obj)
(vl-load-com)
(setq acadapp (vlax-get-acad-object)
doc (vla-get-activedocument acadapp)

(vla-startundomark acadapp)
(vla-zoomextents acadapp)
(cond
((setq ssall (ssget “x”7)); get all entities
(setqg 1 0)
(repeat (sslength ssall)
(setq obj (vlax-ename->vla-object (ssname ssall 1)))
(dsx-put-color obj acBylLayer);; See Chapter 25!
(vlax-put-property obj “Linetype” “BylLayer™)
(vlax-put-property obj “Lineweight” acLnWtBylLwDefault)
(vlax-release-object obj)
(setqg i (1+ 1))
)
)
)

(vla-endundomark acadapp)
(princ “\nFinished processing all entities.”)
(princ)

Example 3 — Purge, Audit and Save all Opened Drawings

This example involves the task of iterating through the Documents collection and
performing a Purge, Audit and Save operation on each document.

(defun C:DOALL (/ $acad docs dnum this)

(vl-load-com)
(setq $acad (vlax-get-acad-object)

159

docs (vla-get-documents $acad)
this (vla-get-activedocument $acad)
dnum (vla-get-count docs)

(vlax-for each docs
(vla-purgeall each)
(vla-auditinfo each T)
(vla-save each)

(vla-get-activedocument this)
(vlax-release-object docs)
(vlax-release-object this)
(vlax-release-object $acad)
(princ (strcat ‘“\nProcessed “ (itoa dnum) “ drawings.’’))
(princ)
)

Example 4 — Zoom Extents and Save all Opened Drawings

This example involves iterating through each opened document, zooming to extents in
the current (active) space and tab, and saving the document. Finally, it returns to the
starting document when finished.

(defun C:ZOOMALL (/ $acad docs dnum this)
(vl-load-com)
(setq $acad (vlax-get-acad-object)
docs (vla-get-documents $acad)
this (vla-get-activedocument $acad)
dnum (vla-get-count docs)

(vlax-for each docs
(vla-put-ActiveDocument each)
(vla-ZoomExtents $acad)
(vla-save each)

(vla-put-activedocument this)

(vlax-release-object docs)

(vlax-release-object this)

(vlax-release-object $acad)

(princ (strcat ‘“\nProcessed “ (itoa dnum) “ drawings.’))
(princ)

160

Chapter 25 - Changes in AutoCAD 2004

I’m not going to provide an exhaustive review of every difference introduced between
AutoCAD 2002 and 2004. I’ll leave that for Autodesk and other people to provide. The
following section describes some of the changes since AutoCAD 2002 with respect to
the ActiveX interface to AcadPreferences collections, as well as the System Variables
collection. Items shown in blue are new since AutoCAD 2002. Items shown in red are
modified since AutoCAD 2002.

General Changes

The most significant general programming change is the conformity to Microsoft
guidelines. In particular: Windows XP compliance. The result is a completely revised
path and registry scheme that embraces the recommendations of Microsoft. Users no
longer must be members of the local Administrators, or Power Users group to launch
AutoCAD. Nor do they require hacked regsistry permissions or policy templates to open
“holes” into the registry for restricted user access. The trade-off is added complexity, not
much, but particularly under the user profile folder tree. This will become apparent as
you examine the new folder paths under the AcadPreferencesFiles collection (see below).

ObjectARX (and ObjectDBX as well) have been updated and recompiled with Microsoft
Visual C++ 7.0 (part of Visual Studio .NET). The result is that ARX and DBX
components built for use on versions prior to AutoCAD 2004 will no longer work. If you
have any such works, you will need to recompile them on VC++ 7.0 for use with
AutoCAD 2004. Case in point is DOSIib by Robert McNeel Inc. (www.mcneel.com)
which has released version 6.03 specifically for use with AutoCAD 2004.

Type Libraries must now be invoked and addressed using their version-specific GUID
names. In other words, where you might have invoked AutoCAD as
AutoCAD.Application, you how must use AutoCAD.Application.16.

Visual LISP Changes

Technically speaking, nothing has changed functionally with respect to Visual LISP.
However, there are a few new oddities. The VLIDE.DSK file which stores your IDE
configuration settings is now stored under your Windows Profile folder (on Windows
2000 and XP systems: \Documents and Settings\<username>\Local Settings\Application
Data\Autodesk\AutoCAD\<language-code>\VLIDE.DSK).

The (vlax-get) function works fine, however the (vlax-put) function is unpredictable.
In some cases it does nothing (does not apply a new value to a specified property). The
function (vlax-invoke) works much more reliably from my tests. For VLISP
programming in AutoCAD 2004, you should make a habit of using the full property and
method inferences to avoid problems. For example, if you’ve been using (vlax-get
object propertyname), you should instead use (vla-get-propertyname object), Or
even (vlax-get-property object propertyname).

161

True Color Properties

As for VLISP (or other) coding changes, the addition of “true color” properties requires
an adjustment to some code. This actually turned out to be the only significant coding
changes | was forced to address. Once you get familiar with RGB color mapping this
won’t be a major concern for you.

Here is an example function you can use to hide the mess from the rest of your code.
Instead of using (vla-put-color) and (vla-get-color), you can use custom functions
like these. 1I’m cheating a bit here by using the DOSIib 6 (dos_acitorbg) function, but
this is ony one possible solution. Thanks for Jon Szewczak for this example:

(defun dsx-put-color (obj num 7/ av)
(setq av (substr (getvar "acadver'™) 1 2))
(if (>= av "16")
;; i AutoCAD 2004. ..
(dsx-put-color2004 obj num)
;> If any other version...
(dsx-put-property obj "Color'™ num)
D)
D)

(defun dsx-put-color2004 (obj num / oColor numlst)
Gf
(not
(vl-catch-all-error-p
(setq oColor
(vl-catch-all-apply “vla-get-TrueColor (list obj))
D)
)
)
(progn ;; if getting the TrueColor object of "obj" did not return a vla-error
(cond
((= "INT (type num)) ;; if an ACI index integer is passed
;; 1T obj is a table record (i.e. Layer)...
(if (vl-string-search "Table™ (vla-get-ObjectName obj))
(progn
(vla-put-ColorMethod oColor acColorMethodByACl)
(vla-put-Colorindex oColor num)

(if (= num acBylayer) ;; if obj iIs an entity

(progn ;; if num is to be bylLayer
(vla-put-ColorMethod oColor acColorMethodByLayer)
(vla-put-Colorindex oColor acBylLayer)

)

(progn ;; if num is to be an override
(vla-put-ColorMethod oColor acColorMethodByACI)
(vla-put-Colorindex oColor num)

)

D)
)

)
((and (listp num) (= (length num) 3)) :;; an RGB list is passed
(vla-put-ColorMethod oColor acColorMethodByRGB) ;; set the method
;5 set the RGB values
(vlax-invoke-method oColor "SetRGB (nth O num) (nth 1 num) (nth 2 num))
)
;; stuff color object back into parent object
(vla-put-TrueColor obj oColor)
; clean up the memory stack of unused objects
(vlax-release-object oColor)

(vl-catch-all-error-message oColor)

162

)
(defun dsx-put-property (obj prop val / try)

(cond
((and
(vlax-property-available-p obj prop)
(not
(vl-catch-all-error-p
(setq try
(vl-catch-all-apply “vlax-put-property (list obj prop val))
D)
)
)
)
val
D)
)
)
(defun dsx-get-property (obj prop 7/ try)
(cond
((and
(vlax-property-available-p obj prop)
(not
(vl-catch-all-error-p
(setq try (vl-catch-all-apply "vlax-get (list obj prop)))
D)
)
try
)
)
)

;5; Provides a concatenated string result of the RGB color list using
;:; comma delimiters. For example, if the RGB list is (255 200 155), the
;::; return value would be “255,200,155”

(defun dsx-acitorgb (cnum / cmap)
(setq cmap (dos_acitorgb cnum))
(strcat
(nth 0 cmap) ","™ (nth 1 cmap) *"," (nth 2 cmap)

)
D)

Important: It is worth noting that Color-Based Plot Styles (CTB) do not work with
drawings that contain true color mapping to entitiess or layer tables. The result is that the
plot style is simply ignored, both during preview and final output. This could possibly
affect code you’ve written to automate plotting via the ActiveX interfaces. For example,
if you assign color 255,148,228 to a given layer and attempt to use monochrome.ctb, the
result will still be a color print (verify using Preview beforehand).

Changes to the ObjectDBX Interface

Due to the updated version of ObjectDBX in AutoCAD 2004, you need to replace your
references to the DLL from “AxDb15.dII” to “AxDb16.dllI”. As mentioned in the
beginning section of this chapter, the GUID string identifier must be updated from
“ObjectDBX.AxDbDocument” to “ObjectDBX.AxDbDocument.16” to denote the class
version. This is actually a Microsoft guideline and was adopted during the porting of
AutoCAD 2004 to using Microsoft Visual C++ 7.0 (part of Visual Studio.NET).

163

Changes to External Referencing of AcadApplication

As with ObjectDBX, you need to update your references to the AutoCAD Application
object when invoking it from an external source. This doesn’t really affect Visual LISP
since it works from within AutoCAD, but it’s good to know nonetheless. The new GUID
string name is “AutoCAD.Application.16”. If you’re developing with Microsoft Visual
Studio 6 or .NET, or Borland Delphi or some other “visual” development product, this is
not really an issue as it is usually apparent while setting a project reference to the
required interface library.

Changes to AcadPreferences

The Preferences collections have been revised somewhat to suit some of the new changes
in AutoCAD 2004. Among these are pathing, display, and a few others. It is worth
noting that the Profiles collection has not been modified.

For the sake of clarity and improved printing | have substituted <%apppath%> for the
new default user profile path used by AutoCAD 2004 on Windows 2000 and XP
operating systems: “%userprofile%\Application Data\Autodesk\AutoCAD

2004\R16.0\enu” and I’ve substituted <klocalpath%> for “wuserprofile%\Local
Settings\Application Data\Autodesk\AutoCAD 2004\R16.0\enu”

IAcadPreferences:

; This object specifies the current AutoCAD settings

; Property values:
Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
Display (RO) = #<VLA-OBJECT lAcadPreferencesDisplay 037faa6c>
Drafting (RO) = #<VLA-OBJECT IlAcadPreferencesDrafting 037faa68>
Files (RO) = #<VLA-OBJECT lAcadPreferencesFiles 037faa70>
OpenSave (RO) = #<VLA-OBJECT IlAcadPreferencesOpenSave 037faa74>
Output (RO) = #<VLA-OBJECT lAcadPreferencesOutput 037faa78>
Profiles (RO) = #<VLA-OBJECT lAcadPreferencesProfiles 037faa7c>
Selection (RO) = #<VLA-OBJECT lAcadPreferencesSelection 037faa80>
System (RO) = #<VLA-OBJECT lAcadPreferencesSystem 037faa84>
User (RO) = #<VLA-OBJECT lAcadPreferencesUser 037faa88>

No methods

; lAcadPreferencesDisplay:
; This object contains the options from the Display tab on the Options dialog

; Note: DockedVisibleLines is ignored

; Property values:

; Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
; AutoTrackingVecColor = unsupported result type: 19

; CursorSize = 5

; DisplayLayoutTabs = -1
; DisplayScreenMenu = 0
; DisplayScrollBars = -1

: DockedVisibleLines = 3

; GraphicsWinLayoutBackgrndColor = unsupported result type: 19
GraphicsWinModelBackgrndColor = unsupported result type: 19
HistoryLines = 400

ImageFrameHighlight = 0

LayoutCreateViewport
LayoutCrosshairColor

0
unsupported result type: 19

164

LayoutDisplayMargins = -1
LayoutDisplayPaper = 0
LayoutDisplayPaperShadow = 0
LayoutShowPlotSetup =
MaxAutoCADWindow = O
ModelCrosshairColor = unsupported result type: 19
ShowRasterlImage = 0
TextFont = "Courier™
TextFontSize = 10
TextFontStyle = 0
TextWinBackgrndColor = unsupported result type: 19
TextWinTextColor = unsupported result type: 19
TrueColorlmages = -1
XRefFadelntensity =
No methods

IAcadPreferencesDrafting:
This object contains the options from the Drafting tab on the Options dialog
Property values:
AlignmentPointAcquisition = 0
Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
AutoSnapAperture = 0
AutoSnapApertureSize = 10
AutoSnapMagnet = -1
AutoSnapMarker = -1
AutoSnapMarkerColor = 2
AutoSnapMarkerSize = 5
AutoSnapTooltip = -1
AutoTrackTooltip = -1
FullScreenTrackingVector = -1
PolarTrackingVector = -1
No methods

; lAcadPreferencesFiles:
This object contains the options from the Files tab on the Options dialog
Property values:
AltFontFile = "simplex.shx"
AltTabletMenuFile = "
Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
AutoSavePath = "<%userprofile%>\\Local Settings\\Temp\\"
ColorBookPath = "C:\\Program Files\\AutoCAD
2004\\support\\color <%apppath%>\\support\\color"
ConfigFile (RO) = "<%Iocalpath%>\\acad2004 cfg”
CustomDictionary = "<WYapppath%>\\support\\sample.cus"
DefaultinternetURL = "http://www.autodesk.com"
DriversPath = "C:\\Program Files\\AutoCAD 2004\\drv"
FontFileMap = "<Y%profilepath%>\\support\\acad.fmp"
HelpFilePath = "C:\\Program Files\\AutoCAD 2004\\help\\acad.chm"
LogFilePath = "<%apppath%>\\"
MainDictionary = "‘enu"
MenuFile = "<%apppath%>\\support\\acad"
PostScriptPrologFile = ™"
PrinterConfigPath = "<W%apppath%>\\plotters"
PrinterDescPath = "<happpath%>\\plotters\\PMP Files"
PrinterStyleSheetPath = "<W%apppath%>\\Plot Styles"
PrintFile = "_"
PrintSpoolerPath = "<%userprofile%>\\Local Settings\\Temp\\"
PrintSpoolExecutable = ™"
; SupportPath = "<%apppath%>\\support;C:\\Program Files\\AutoCAD
2004\\support C:\\Program Files\\AutoCAD 2004\\fonts;C:\\Program Files\\AutoCAD
2004\\help;C:\\Program Files\\AutoCAD 2004\\express;C:\\Program Files\\AutoCAD
2004\\support\\color"
; TempFilePath = "<Wuserprofile%>\\Local Settings\\Temp\\"

165

TemplateDwgPath = "<%localpath%>\\Template"
TempXrefPath = "<W%userprofile%>\\LOCALS~1\\Temp\\"
TextEditor = "Internal”
TextureMapPath = "<\localpath%>\\textures"
ToolPalettePath = "<%apppath%>\\support\\ToolPalette"
WorkspacePath = "<Wapppath%>\\Data Links"

Methods supported:
GetProjectFilePath (1)
SetProjectFilePath (2)

IAcadPreferencesOpenSave:

This object contains the options from the Open and Save

Options dialog

Property values:
Application (RO)
AutoAudit = 0
AutoSavelnterval
CreateBackup = -1
DemandLoadARXApp = 3
FullCRCValidation = 0O
IncrementalSavePercent = 50
LogFileOn = 0O
MRUNumber (RO) = 9
Proxylmage = 1
SaveAsType = 24

10

SavePreviewThumbnail = -1
ShowProxyDialogBox = -1
TempFileExtension = "ac$"

XrefDemandLoad = 2
No methods

IAcadPreferencesOutput:
This object contains the options from the Output tab on
Property values:

tab on the

#<VLA-OBJECT lAcadApplication 00af9594>

the Options dialog

Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
DefaultOutputDevice = "<%apppath%>\\plotters\\PlotterDevicel.pc3"

DefaultPlotStyleForLayer = "ByColor™
DefaultPlotStyleForObjects = "ByColor"
DefaultPlotStyleTable = "monochrome.ctb"
OLEQuality = 1
PlotLegacy = 0O
PlotPolicy 1
PrinterPaperSizeAlert = -1
PrinterSpoolAlert = 0
UselLastPlotSettings = 0

No methods

I1AcadPreferencesProfiles:

This object contains the options from the Profiles tab on the Options dialog

Property values:
ActiveProfile = "default"”

Application (RO) = #<VLA-OBJECT IAcadApplication 00af9594>

Methods supported:
CopyProfile (2)
DeleteProfile (1)
ExportProfile (2)
GetAllProfileNames (1)
ImportProfile (3)
RenameProfile (2)
ResetProfile (1)

IAcadPreferencesSelection:
This object contains the options from the Selection tab

on the Options dialog

166

Note: There is no property for hover grip color, use GRIPHOVER sysvar

Property values:
Application (RO) = #<VLA-OBJECT IAcadApplication 00af9594>
DisplayGrips = -1
DisplayGripsWithinBlocks = 0
GripColorSelected = 1
GripColorUnselected = 160
GripSize = 5
PickAdd = -1
PickAuto = -1
PickBoxSize = 3

PickDrag = 0O
PickFirst = -1
PickGroup = -1

No methods

IAcadPreferencesSystem:
This object contains the options from the System tab on the Options dialog
Property values:
Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
BeepOnError = 0
DisplayOLEScale = -1
EnableStartupDialog = -1
LoadAcadLsplInAllDocuments = 0
ShowWarningMessages = -1
SingleDocumentMode = 0
StoreSQLIndex = -1
TablesReadOnly = 0
No methods

; lAcadPreferencesUser:

; This object contains the options from the User tab on the Options dialog
; Property values:

; ADCInsertUnitsDefaultSource = 1

; ADCInsertUnitsDefaul tTarget = 1

; Application (RO) = #<VLA-OBJECT lAcadApplication 00af9594>
; HyperlinkDisplayCursor = -1

; HyperlinkDisplayTooltip = -1

; KeyboardAccelerator = 1

; KeyboardPriority = 2

; SCMCommandMode = 1

; SCMDefaultMode = 1

; SCMEditMode = 1

; SCMTimeMode = -1

; SCMTimeValue = 250

; ShortCutMenuDisplay = -1

; No methods

; The SCMTimeMode value controls whether the right-click threshold control is

enabled or not. The SCMTimeValue value controls the delay threshold if
SCMTimeMode is set to True (-1).

System Variables

Note: %userprofile% is substituted in the path values below for the sake of
clarity and printing only. The actual values use the user profile path as it

is expanded on the client machine. Items in green indicate an update since
2002. Items in red indicate a new system variable.
ACADVER "16.0" (read only)

167

CLEANSCREENSTATE

GFANG

GFCLR1

GFCLR2

GFCLRLUM
GFCLRSTATE

GFNAME

GFSHIFT

GRIPHOVER
GRIPOBJLIMIT
GRIPTIPS
INTERSECTIONCOLOR
INTERSECT IONDISPLAY
LOCALROOTPREFIX

MTEXTFIXED
MTIIGSTRING
MYDOCUMENTSPREF IX
OBSCUREDCOLOR
OBSCUREDLTYPE
PALETTEOPAQUE
PEDITACCEPT
REPORTERROR
ROAMABLEROOTPREFIX

SIGWARN

STANDARDSVIOLATION
TRAYICONS
TRAYNOTIFY
TRAYTIMEOUT
TSPACEFAC

XREFNOTIFY

New Commands

3DCONFIG

BMPOUT
CLEANSCREENON
CLEANSCREENOFF
HLSETTINGS
JPGOUT

MREDO

PNGOUT

PUBLISH

QNEW
REVCLOUD
SECURITYOPTIONS

0 (read only)

0
""RGB:000,000, 255"
"RGB:255,255,153"
1.000000000

1
1
0
3
100
1

257
OFF

“Y%apppath®%\..." (read only)

0
"abc"

"<Yuserprofile%>\My Documents" (read only)

257 (range from 0 to 257 only)
0 (range from O to 11 only)
0]

0

1

“"Y%apppath®%\. . " (read only)

1

2

1

1

0

1.0000

2

Configure 3D performance options such as Adaptive Degradation
(adjusts resolution with respect to zoom status and viewpoints), as well
as many other features used by 3D solids and surfaces drawings
Export bitmap image file

Toggle cleanscreen display ON (same as CTRL+0)

Toggle cleanscreen display OFF (same as CTRL+0)

Configure hidden line behavior and display settings

Export JPEG image file

Multiple Redo

Export Portable Network Graphics (PNG) image file

Opens Design Publishing utility for publishing DWF files or batch
plotting to physical or virtual printer devices

Quick-New for creating a new drawing with default options
Revision Cloud (formerly part of Express Tools)

Configure digital signature security management options

168

SETIDROPHANDLER Configure I-Drop options

SIGVALIDATE Validate digital signature of current drawing

TIFOUT Export Tagged Image File format (TIF) image file
TOOLPALETTES Toggle Tool Palettes ON (same as CTRL+1)
TOOLPALETTESCLOSE Toggle Tool Palettes OFF (same as CTRL+1)

TRAYSETTINGS Configure editor system tray settings (display options)

WIPEOUT WipeOut region creation and editing (formerly part of Express Tools)
XOPEN XREF open

Modified Commands (Since AutoCAD 2002)

SAVEAS No more R14 DWG format option

WHOHAS Enhanced to use the Windows file object handlers and uses a new
DWL log file (hidden) to store last-user of file on network.

WMFOUT Enhanced graphics formatting and display quality

TODAY Removed!

MEETNOW Removed!

ENDTODAY Removed!

VIEWRES Default is FastRes ON and facet resolution at 1000

Tool Palettes

Tool palettes are an interesting new feature in AutoCAD 2004. Not only do they take the
idea of toolbars to a new realm, they introduce XML as a default data storage medium
within AutoCAD. Even though DesignXML has been around for quite a while, it was
not actually an internally managed data format for storing and retrieving information for
routine AutoCAD functionality.

Tool pallets are stored in a folder specified by the ToolPalettePath property of the
lacadPreferencesFiles collection (see earlier mention). By default, the path is under the

user profile path (on Windows 2000 and Windows XP systems, this is under:
\Documents and Settings\<username>\Application Data\Autodesk\AutoCAD

2004\R16.0\<language-code>\Support\ToolPalette\Palettes\ and use the .ATC
file extension. The following snippet is taken from the palette file: Sample office
project_OOCFCE40-D240-433A-8C62-54E982931ABB.atc. (You may notice that the
beginning part is not a particularly well-formed XML document by W3C guidelines, but
it gets the job done obviously).

<Palette>
<ltemID idValue="{00CFCE40-D240-433A-8C62-54E982931ABB}""/>
<Properties>
<ltemName resource="186" src="AcTpCatalogRes.dll''/><Images/>
<Time createdUniversalDateTime="2003-02-12T22:37:06" modifiedUniversalDateTime="2003-
02-12T722:37:06"/>
</Properties>
<Source/>
<Tools>
<Tool>
<ltemID idValue="{04314506-7712-4F2C-BB53-B7AD2EA423DD}""/>
<Properties>
<ltemName resource="160" src="AcTpCatalogRes.dll'/>
<Images>
<Image cx="32" cy=""32" resource="I1DB_BITMAP_32_OFFICE_CARPET"
src="AcTpCatalogRes.dll"/>
</Images>
<Time createdUniversalDateTime="2003-02-12T22:37:06"
modifiedUniversalDateTime="2003-02-12T22:37:06"/>

169

</Properties>
<Source idValue="{59A63456-0025-4EA0-9CB2-608916D5177C}" />
<StockToolRef idvValue="{AFOF641B-9CCE-4474-8582-EFEOA38410FC}""/>
<Data>
<GeneralProperties>
<Color>
<BasicProplInfo>
<PropValue unspecified="FALSE" valueType="2" value="0"/>
</BasicProplInfo>
<Createlnfo>
<AcCmColor mRGB="3256776847"/>
</Createlnfo>
</Color>
- - (more) . . .

As you can see, this is a typical XML document, however, it does not use the standard
XML DTD document header reference you see in most XML formatted documents. The
parent document that references all available base palette definition files is the
AcTpPalette.atc file, which is located one folder level above the folder used by palette
definition files stated above.

If you Export a palette, it is written in XML form to a .XTP file. The default folder
location is the My Documents folder path. Unlike some other AutoCAD export
functions, this one actually uses the name of the palette as the default base filename
value. For example, exporting the “Sample Office Project” will default to “sample office
project.xtp” in the My Documents folder, unless you specify otherwise. In addition,
when you export a Profile to an .ARG file, you will notice that the ToolPalette XML
instance is appended to the end of the file.

An interesting thing to note here is that a new command has been added to act as a
wrapper to the previous TOOLBAR command. The new command for creating,
modifying, importing and exporting toolbar button files and palettes is CUSTOMIZE.
You can invoke it by right-clicking on a palette and picking the Customize option, or by
typing it in at the command prompt. Below is the “Sample Office Project” palette export
file (snippet only) to show what an XTP file looks like internally. Pay particular attention
to how the insertion properties are represented <data> section colored green below.

<ToolPaletteExport>
<DependentFilesPath>Sample office Project</DependentFilesPath>
<PaletteSets>
<PaletteSetData>
<PaletteSetContent>
<Palettes>
<PaletteData>
<PaletteContent>
<Palette>
<ltemlD idValue="{0O0CFCE40-D240-433A-8C62-54E982931ABB}"" />
<Properties>
<ltemName resource="186" src="AcTpCatalogRes.dll''/>
<Images/>
</Properties>
<Source/>
<Tools>
<Tool>
<ltemlD idValue="{04314506-7712-4F2C-BB53-B7AD2EA423DD}""/>
<Properties>
<ltemName resource="160" src="AcTpCatalogRes.dll''/>
<lmages>

170

<lmage cx="32" cy="32" resource="1DB_BITMAP_32_OFFICE_CARPET"
src="AcTpCatalogRes.dll"/>
</Images>
<Time createdUniversalDateTime="2003-02-12T22:37:06"
modifiedUniversalDateTime="2003-02-12T722:37:06"/>
</Properties>
<Source idValue="{59A63456-0025-4EA0-9CB2-608916D5177C}"/>
<StockToolRef idValue="{AFOF641B-9CCE-4474-8582-EFEOA38410FC}"/>
<Data>
<GeneralProperties>
<Color>
<BasicProplInfo>
<PropValue unspecified="FALSE" valueType="2" value="0"/>
</BasicProplInfo>
<Createlnfo>
<AcCmColor mRGB="'3256776847"/>
</Createlnfo>
</Color>
<Layer>
<BasicProplInfo>
<PropValue unspecified="TRUE" valueType="1"/>
</BasicProplInfo>
</Layer>
<Linetype>
<BasicProplInfo>
<PropValue unspecified="TRUE" valueType="1"/>
</BasicProplInfo>
</Linetype>
<LinetypeScale>
<BasicProplInfo>
<PropValue unspecified="TRUE" valueType="3" value="0"/>
</BasicProplInfo>
</LinetypeScale>
<PlotStyle></PlotStyle>
<LineWeight></LineWeight>
<HatchType></HatchType>
<PatternName></PatternName>

There are also three new objects in the ActiveX object model in AutoCAD 2004. They
are AcCmcColor, LayerStateManager and SecurityParams. AcCmColor objects are
used to define the TrueColor property settings for an entity or object. The
LayerStateManager provides an object interface to create, modify and delete LayerState
objects, which are actually stored in the drawing as Xrecord objects. The last object,
SecurityParams, allows for programmatic access to drawing signatures and digital
certificate information used to digitally sign a drawing for authenticity and security.

Each of these objects are externalized and must be invoked using GetlInterfaceObject in
order to access them. For example, to access the LayerStateManager object, you might
use the following code example:

(vla-GetiInterfaceObject acadapp ""AutoCAD.AcadlLayerStateManager.16')
Refer to the AutoCAD 2004 development documentation for more detailed information

on these new objects, as well as all other changes in AutoCAD 2004 programming
features.

171

Conclusion

While this book covers a lot of information about using Visual LISP, it cannot cover
everything. Visual LISP has a lot of potential and provides a lot of powerful tools to
LISP developers. | wish Autodesk would commit some resources to improving it to
bring it up to speed with current development tools. At the very least, fix some of the
incomplete features and irritating quirks, but | think Autodesk is letting LISP die on the
vine in favor of VBA and ARX. The future of AutoCAD programming appears to be
aimed at .NET and possibly Java, but not LISP. Ignoring LISP within AutoCAD would
be unfortunate and a big mistake in my humble opinion.

Most of the features that could be improved would require very minimal investment in
time and budget and would yield a much more robust development tool. Some
improvements might be fixing the project management tools, better compilation controls,
fixing dialog box inconsistencies, adding “Intelli-Sense” completion, streamlined
functionality for referencing external objects and components, making a standalone
version and so on.

Hopefully, the information and examples provided herein will give you some additional
motivation to further explore Visual LISP and become a better software developer as a
result. If not, it makes a great coffee cup stand. In any case, | hope you find this book
useful and helpful.

Happy Coding!

Dave

172

Appendix A - VLAX Enumeration Constants

Constant Symbol
:vlax-false

:vlax-null

:vlax-true
vlax-vbAbort

vlax-vbAbortRetrylgnore
vlax-vbApplicationModal

vlax-vbArchive
vlax-vbArray
vlax-vbBoolean
vlax-vbCancel
vlax-vbCritical
vlax-vbCurrency
vlax-vbDataObject
vlax-vbDate
vlax-vbDefaultButtonl
vlax-vbDefaultButton2
vlax-vbDefaultButton3
vlax-vbDirectory
vlax-vbDouble
vlax-vbEmpty
vlax-vbError
vlax-vbExclamation
vlax-vbHidden
vlax-vbHiragana
vlax-vblgnore
vlax-vbInformation
vlax-vbinteger
vlax-vbKatakana
vlax-vbLong
vlax-vbLowerCase
vlax-vbNarrow
vlax-vbNo
vilax-vbNormal
vilax-vbNull
vlax-vbObiject
vlax-vbOK
vlax-vbOKCancel
vlax-vbOKOnly
vlax-vbProperCase
vlax-vbQuestion
vlax-vbReadOnly
vlax-vbRetry
vlax-vbRetryCancel
vlax-vhSingle
vlax-vbString
vlax-vbSystem
vlax-vbhSystemModal
vlax-vbUpperCase
vlax-vbVariant
vlax-vbVolume
vlax-vbWide
vlax-vbYes

Value
:vlax-false
:vlax-null
:vlax-true
3

2

0

32

8192

11

2

16

6

13

7

0

256

512

16

5

0

10

48

2

32

5

64

2

[y
[op}

ohORPRFRPAMNOMNAOAOPRARRPWWORPRPFRPOFRPONONMNW

173

vlax-vbYesNo 4
vlax-vbYesNoCancel 3

Note: There is no vlax-vbDecimal or vlax-vbNothing enumeration. Also, the vlax-
vbNull does not translate well into ActiveX consumers such as VBA as a true “Null”

object or value. Be aware of the data type changes between VBA 6, VBG6 and the .NET
environments.

174

Appendix B — VLISP IDE Keyboard Shortcuts

The following table shows the available default keyboard shortcuts provided within the
Visual LISP IDE or VLIDE editor.

F1

F3

F6

F8

SHIFT+F8
CTRL+SHIFT+F8
F9
CTRL+SHIFT+F9
CTRL+W
CTRL+R
CTRL+Q
ALT+F6

ALT+Q

Help

Find / Replace Next
Display LISP Console Window
Step Into

Step Over

Step Out Of

Toggle BreakPoint

Clear All BreakPoints

Add Watch

Reset to Current Level

Quit to Current Level

Zoom

Exit / Quit Visual LISP IDE

175

Appendix C — Tips & Tricks for Visual LISP

Adding VLX support to the (autoload) function

By default, the AutoLISP (autoload) function will only look for .LSP, .FAS or .MNL file
types when searching for a specified file loading. It will not consider .VLX files at all.
This is a minor but often significant oversight by Autodesk, but fortunately it is an easy
fix. Simply open the Acad2000doc.Isp file located in the Support folder of your
AutoCAD installation. Then locate the (defun ai_ffile) function definition and add an
additional check for .vIx files, save the file and close it. This will need to be done on
every machine that you wish to perform this change.

Saving your VLIDE configuration settings

When you modify the editor configuration settings your changes are saved in a
configuration file named VLIDE.DSK in the Support folder where your local copy of
AutoCAD (or network client) is installed. You should keep a copy of this file elsewhere
to avoid it being overwritten when reinstalling AutoCAD or installing a service pack
update. This file contains your formatting preferences (colors, tabs, indentation, etc.).

Recovering DCL Code from VLX Files

In Chapter 13 the details of how LSP and DCL are compiled into VLX output was
discussed. One thing to remember is that while the LSP code is first compiled into FAS
form before being compiled into the VLX output, DCL code is not compiled at all. It is
simply appended to the bottom of the VLX output file. Therefore, you can open VLX
files in any standard text editor such as Windows Notepad, and browse to the bottom of
the file to find all the DCL code in tact. You can copy and paste it from there back into a
new DCL file whenever you delete a DCL file by mistake but happen to have the VLX
available.

Using Projects and DCL with the Make Application Wizard

To put Projects to their full use, it is a good practice to add all related files for a given
VLX into a project. Then order them in the proper sequence based upon the order of
function definition statements (load order). Next, when using the Make Application
wizard, select the Project PRJ file instead of the individual LSP files.

Since DCL files cannot be included in a Project list, you would normally have to add
them individually in the Resource files list of the Make Application wizard (Expert mode
only). However, another approach can be to concatenate all the DCL files into a single
DCL file. This will result in having to add one PRJ and one DCL file to make the VLX
application.

To concatenate multiple DCL files into a single DCL file, use the age-old DOS command
COPY as follows:

176

COPY *.DCL ALL.DCL

This will copy all .DCL files into a single file named ALL.DCL. Remember to consider
the relative paths, or run everything from within the same path location.

Team-based VLX Development

If you’re developing a network based project along with several other developers, you
should keep a few things in mind. First, the PRV format stores the path/drive
information for your source files when compiling VLX applications. Secondly, sharing
PRV setup files only works when the relative pathing is portable to all intended users.
By “portable”, | mean that the relative path/drive information must be equally applicable
by all intended users. It’s a good idea to have all the developers copy the entire source
code set to their local hard drives and use local pathing for all your PRV file setups.
Then after the VLX apps are built, copy them up to the intended network server(s).

In addition, if you have some sort of change management software, such as Visual Source
Safe, StarBase, PVCS-DOORS or whatever, you should use that in order to manage
check-out, check-in and version control over all the various files to avoid stepping on
each other’s work and creating confusion.

177

Appendix D — Useful Resources
Helpful/Recommended Web Sites:

http://www.acadx.com **

http://www.vbdesign.net **

http://www.myitforum.com **

http://www.dsxcad.com **

http://www.upfront.com

http://www.ntfag.com

http://www.microsoft.com/scripting

http://www.microsoft.com/data

http://www.tenlinks.com

http://www.cadinfo.net

http://www.swynk.com

http://www.adminscripts.net

http://www.fourguysfromrolla.com

http://www.15seconds.com

http://www.win2000mag.net

http://www.planet-source-code.com

178

Glossary
ActiveX

Bookmark

Breakpoint

Call-Back

Collection

COM

Constant

Consumer

Control

Data Type

DCL

Debug

(boy, oh boy. Ask Microsoft)

A location marker placed in a document that enables the user to
return to that location quickly.

A marker placed in program code that instructs the compiler or
interpreter to pause execution at runtime and wait for the user to
perform debugging tasks or continue execution.

A requested response to a given action or event. For example, a
call-back to clicking a button might be *“accept” which then
triggers a call to a particular function or expression.

A group of objects with a common parent and related properties or
methods that enable processing the objects in a logical manner as a

group.

Component Object Model. A Microsoft technology that defines a
hierarchical organization of software components, and services and
provides intrinsic properties, methods and events for components
and services that enable more efficient programmatic manipulation
and promotes componentized functional reuse. Other flavors
include Distributed COM or DCOM and the newer COM+
included with Windows 2000 and XP platforms.

A variable or symbol with a static value assignment.

Any software component or application that imports or uses the
exposed component services of another software component or
service. The source of the imported components or services is
known as a provider.

An ActiveX DLL component.

The intrinsic nature of a particular value with respect to what form
of data is represented. Examples of ActiveX data types include
Integer, Long, Double, String, and Array.

Dialog Control Language, a C-based language construct used to
define dialog box forms within the AutoCAD LISP and Visual
LISP environments.

The process of isolating, diagnosing and correcting errors in
program code or programming logic.

179

Dictionary

DLL

Element
Enumeration

Evaluate

Event

Expression

Focus

Function

Global

Heap

Interface

A type of collection that provides direct access to member objects
by a using unique identifier for each object.

A dynamic link library is a Windows-based ActiveX component
that usually exposes functions, properties, methods, and constants
for use by other applications. It is something like a packaged
library of tools that can be loaded by applications to perform
specialized tasks.

An individual member of an array or safearray construct.
(need an official definition for this one)

The process of executing a LISP expression or extracting an
associated value from a LISP symbol and returning a result.

A moment when some action occurs in a software program. This
can be the click of a button or moving an entity. An event usually
provides programmatic notification that can be detected and
responded to using a reactor or callback.

A program statement within the context of AutoLISP or Visual
LISP interpreter environments.

The state of a given item within a DCL dialog box either having
control by the active cursor location. If an editbox has the cursor
active and is editable, it is said to have the focus. When the cursor
is moved out of a given item, it is said to have lost the focus.

In the context of software development, this is an expression or
group of expressions that processes some type of input and returns
a result. In the context of Visual LISP, a subroutine and a function
are synonymous. In the context of other languages like Visual
Basic or C/C++ a subroutine returns no result, while a function
returns a result.

Any variable, symbol or expression that is exposed for either read
or write manipulation by all other variables, symbols or expression
running in the same namespace. A symbol or expression that is
hidden from access by other expressions is said to be Localized or
Local to its parent function or expression.

A pile of trash that needs to be cleaned up, or a logical memory
address space allocated for a particular group of related expression
definitions and/or their results.

(Programming) any means by which one software component or
service can connect to another for the purposes of requesting

180

Iterate

Local

Marshalling

Method

Modal / Modeless

NameSpace

Object

Object Model

Project

services or values from the other component or service. This can
also involve the passing of information in either direction through
a common logical programmatic reference.

A loop process where items are accessed in a sequential order
within a group of related items. Examples of iteration functions
are (while), (do while), (foreach), (repeat), and (vlax-for).

Any variable, symbol or expression that is not shared or accessible
outside of its parent function or expression.

The process of controlling an external process remotely from
another process. Launching another application in serialized
fashion is but one example of marshalling.

A built-in function of a given object that enables automated
retrieval or modification of that object. Examples of methods
provided by a Line object include Move, Rotate, and Copy.

Refers to the nature of how a dialog form can be displayed and
controlled within the environment in which it is launched. If the
dialog can remain visible while the user can continue to interact
with other aspects of the parent application, the form is said to be
Modeless. If the visible form prevents interaction with other
aspects of the parent application until it is closed, that form is said
to be Modal in nature.

An isolated memory address range allocated to a given application
or process. The address range is protected from access by other
address ranges, and thereby creates a protected environment for the
process to execute within.

In the context of software development: An instance of a class that
provides intrinsic functionality such as properties, methods or
events that can be used to interact with other services, components
or objects to perform some programming task.

A logical, hierarchical organization of objects within a parent
software application or process. For example, Windows 2000 has
an object model provided by the Win32 and DCOM or COM+
class environments. AutoCAD 2002 has its own object model
provided by the ActiveX framework and exposed through
ObjectDBX, ObjectARX, VBA and Visual LISP environments.

(Visual LISP) a named collection of program source code files.

181

Property

Provider

Reactor

Recursion

RPC

SafeArray

Scope

Stack

Stepping

Type Casting

Type Library

An intrinsic attribute of a given object that enables unique
identification of that object in some way.

A software application or component that exposes some
functionality for use by other applications or components. In
particular, it becomes a provider while it is actually used by a
consumer application, component or service.

A special type of software service provided by Visual LISP that
acts as a listening device for specific events within the AutoCAD
application session and optionally performs some task when a
specified condition is met by an intercepted event.

The process of evaluating inputs to a given function whereby the
repetitive processing to achieve a desired result involves one or
more self-invocations of the same function by itself until a final,
terminating condition is met.

A Remote Procedure Call process that is provided by the Windows
operating system to allow a local process to request a process to be
created on another machine to perform some action remotely.

An array of elements whereby the array has a fixed length and
cannot be modified to increase or decrease the length (number of
elements that can be stored within it). It is said to be “safe”
because it cannot change length, and thereby reduces the
possibility of errors as a result of attempting to enter or retrieve
elements from an index that is out of bounds (beyond the end of
the array).

A minty mouthwash, or a logical boundary with respect to the
reach or lifespan of a specific symbol or expression

A logical container that can collect objects or values and allow for
systematic addition or removal of members in an orderly or
sequential manner.

The process of stopping program execution and allowing the user

to manually advance execution one statement or one line at a time.
There are several types of stepping: Step Into, Step Over and Step
Out Of.

The process of converting one data type to another, such as
converting an integer number value to a string value.

Also called a TypeL.ib, is a dedicated software component that
identifies the object model and member objects, properties,

182

Variant

WorkSpace

WSH

methods, and constants of that object model to any other
applications or processes that request programmatic interaction.

A data type that is defined to be capable of storing all other data
types, thereby avoiding the concern of verifying a given data type
before assigning or retrieving it from a given variable or symbol.

The active set of related program documents opened in the
programming development environment.

Microsoft’s Windows Scripting Host, a software service that
provides runtime support for executing script code files on a
machine. WSH allows scripts to be run either in the Windows
namespace or within the namespace of a calling application or
process from a programmatic interface. The default WSH enabling
services are CSCRIPT (command line interface) and WSCRIPT
(graphical user interface).

183

	Cover
	Inside Cover
	Acknowledgements
	Contents
	About the Author
	Introduction
	Chapter 1- The Visual LISP Development Environment
	Chapter 2 - Basic Coding in Visual LISP
	Chapter 3 - Using ActiveX with Visual LISP
	Chapter 4 - Debugging Code with Visual LISP
	Chapter 5 - Working with Projects and Multiple Files
	Chapter 6 - Working with Variants and Safearrays
	Chapter 7 - Object Manipulation Functions
	Chapter 8 - File and Directory Functions
	Chapter 9 - Mapping and Iteration Functions
	Chapter 10 - Working with Namespaces
	Chapter 11 - Registry Functions
	Chapter 12 - Reactors and Call-Backs
	Chapter 13 - Making Visual LISP Applications
	Chapter 14 - Using ObjectDBX with Visual LISP
	Chapter 15 - XDATA and XRECORDs
	Chapter 16 - The AutoCAD Application Object
	Chapter 17 - AutoCAD Entities
	Chapter 18 - Documents
	Chapter 19 - The Preferences Objects
	Chapter 20 - Menus and Toolbars
	Chapter 21 - Interfacing with Other Applications
	Chapter 22 - Using Visual Basic DLLs with Visual LISP
	Chapter 23 - Working with Dialog Forms
	Chapter 24 - Examples of Common Tasks
	Chapter 25 - Changes in AutoCAD 2004
	Conclusion
	Appendix A - VLAX Enumeration Constants
	Appendix B - VLISP IDE Keyboard Shortcuts
	Appendix C - Tips & Tricks for Visual LISP
	Appendix D - Useful Resources
	Glossary

